• Title/Summary/Keyword: Volume electrical resistivity

Search Result 195, Processing Time 0.032 seconds

The Insulation Test of Varnish (바니쉬의 절연성 평가)

  • Kim, Jeong-Hun;Shin, Beak-Chul;Kim, Sung-Pil;Lee, Soo-Woon;Lee, Jong-Pil;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.950-952
    • /
    • 1999
  • In this paper, we are studied a electrical properties study with P.D.GEORGE/STER LING Co. P.B 302-LV-2 POLYBUTADIENE RESIN which is used for VPI(Vacuum Pressure Impregnation)processing of field magnet and armature of traction motor in Korean national railroad at present was carried out its FT-IR (Fourier Transform Infra-Red) volume resistivity characteristics. The varnishes were experimented with the temperature range form $25[^{\circ}C]$ to $180[^{\circ}C]$ and applied voltage were supplied at 100, 250, 500, 1,000[V]. In this condition, the volume resistivity for specimens were measured. From the above study, the following data obtained for volume resistivity. It can be confirmed that velume resistivity with the increase of temperature is lower rapidly from room temperature to $130[^{\circ}C]$, and it is lower slowly at temperature higher than $130[^{\circ}C]$. Volume resistivity value is higher, according as the specimen is thick gradually. As the applied voltage is higher in the same temperature, volume resistivity value is lower.

  • PDF

Volume Resistivity, Specific Heat and Thermal Conductive Properties of the Semiconductive Shield in Power Cables

  • Lee Kyoung-Yong;Choi Yong-Sung;Park Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.89-96
    • /
    • 2005
  • To improve the mean-life and reliability of power cables, we have investigated the volume resistivity and thermal properties demonstrated by changing the content of carbon black, an additive of the semiconductive shield for underground power transmission. Nine specimens were made of sheet form for measurement. Volume resistivity of the specimens was measured by a volume resistivity meter after 10 minutes in a preheated oven at temperatures of both 25$\pm$1[$^{\circ}C$] and 90$\pm$ 1[$^{\circ}C$]. As well, specific heat (Cp) and thermal conductivity were measured by Nano Flash Diffusivity and DSC (Differential Scanning Calorimetry). The ranges of measurement temperature were from 0[$^{\circ}C$] to 200[$^{\circ}C$], and heating temperature was 4[$^{\circ}C$/min]. From these experimental results, volume resistivity was high according to an increase of the content of carbon black. Specific heat was decreased, while thermal conductivity was increased according to a rise in the content of carbon black. Furthermore, both specific heat and thermal conductivity were increased by heating temperature because the volume of materials was expanded according to a rise in temperature.

Volume Resistivity Characteristies of Transformer Oils due to the Stirring Temperalure of BTA (BTA 교반온도에 따른 변압기유의 체적고유저항 특성)

  • 이용우;김석환;박문규;소병문;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.290-293
    • /
    • 1997
  • In this paper, volume resistivity is studied so that the electrical properties for transformer oil due to the stirring temperature of BTA is investigated. A measurement of volume resistivity using the VMG-1000 highmegohm meter is recorded after 10 minutes when the each voltage, and DC 100[V], 250[V], 500[V] and 1000[V] is applied, according to the step voltage appliaction method. A coaxial cylindrical liquid electrode to measure volume resistivity of specimen is used, and its geometric capacitance is 16[pF].

  • PDF

The Volume Resistivity Characteristics on Fluid Flow of Ultra-High Voltage Transformer Oils added BTA (BTA를 첨가한 초고압변압기유의 유동시 체적고유저항특성)

  • Lee, Yong-Woo;Lee, Soo-Won;Shin, Hyun-Taek;Han, Sang-Sub;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.267-269
    • /
    • 1997
  • The electrical properties due to the Benzotriazole(following as BTA) additive in fluids for insulating and cooling the ultra-high voltage transformer is studied in this paper. Specimen having the several contents of BTA, such as 5[ppm]. 10[ppm] and 30[ppm] is used in order to investigate the characteristics on volume resistivity in case of fluid flow in experimental device made in lab. Volume resistivity is decreased with an increase of fluid flow velocity and increased with BTA content in low temperature region, but volume resistivity of specimen contained BTA 10[ppm] is the largest thing over $30[^{\circ}C]{\sim}50[^{\circ}C]$ than the others in experiment.

  • PDF

The Characteristics of Volume Resistivity for the Transformer Oil irradiated with the Electron Beam of Low Dose (저조사량 전자선에 대한 변압기유의 체적고유저항 특성)

  • 이용우;이우영;조돈찬;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.211-215
    • /
    • 1996
  • In this paper, the volume resistivity of transformer oil is made researches so that the electrical properties for transformer oil is investigated. The specimen is produced by the irradiation of electron beam classified into the low dose, such as 0.5[Mrad], 1[Mrad], 2[Mrad]. The effect of electron team irradiation is studied by investigating the electrical properties of dielectric liquid due to the difference of electron beam dose. To measure the physical properties of transformer oil, courier Transform-Infrared Spectroscopy is investigated. And the study far the electrical properties is made by measuring the volume resistivity of each specimen. By means of the result from this experiments, it is introduced that the movement of carrier to contribute to the volume resistivity on the electrical properties.

  • PDF

Electrical Conduction Characteristics of Ultra High Voltage Cable for Prevention of Electrical Fires (전기 방재를 위한 초고압케이블의 전기 전도 특성)

  • Park, Hee-Doo;Park, Ha-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.216-217
    • /
    • 2007
  • In this paper we investigated the volume resistivity and AC conduction current according to the temperature and voltage. As a result, the volume resistivity comes to be small according to the measurement temperature and voltage. AC conduction current of the heat treatment specimen is increased because of the decrease of insulation.

  • PDF

Electrical and Mechanical Properties of Semiconducting Shield for Power Cable by Carbon Nanotube Content (탄소나노튜브(CNT) 함량에 따른 전력케이블용 반도전 재료(층)의 전기적/기계적 특성 연구)

  • Yang Jong-Seok;Lee Kyoung-Yang;Shin Dong-Hoon;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.381-386
    • /
    • 2006
  • In this study, we have investigated electrical and mechanical properties of semiconducting materials for power cable caused by CNT. Specimens were made of sheet form with the four of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the pre-heated oven of both $23{\pm}\;1\;[^{\circ}C]\;and\;90{\pm}\;1\;[^{\circ}C]$. And stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/Cm2] and 600[%]. From this experimental results, the volume resistivity had different properties because of PTC/NTC tendency at between $23[^{\circ}C]\;and\;90[^{\circ}C]$. Also volume resistivity was low by increasing the content of CNT. It means that a small amount of CNT has a excellent electrical properties. And stress was increased, while strain was decreased by increasing the content of CNT. Thus, we could know that a small amount of CNT has a excellent electrical and mechanical oroperties.

Effect of Nano Filler on the Electrical Properties of Epoxy Composite (에폭시 복합재료의 전기적 특성에 미치는 나노 충진제의 영향)

  • Kim, Joung-Sik;Choi, Hyun-Min;Park, Hee-Doo;Ryu, Boo-Hyung;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.46-46
    • /
    • 2010
  • In this paper, we studied the volume resistivity and the electrical conductivity properties of nano composites to investigate the electrical properties of epoxy composites added nano MgO. The specimens were produced by classifying to 1.0, 3.0, 5.0, 10[wt%] and virgin specimen according to the addition amount of MgO. We measured the volume resistivity of nano filler using the High Resistance Meter(4329A) at the measuring temperature changed to 25, 50, 80, 100, and [$120^{\circ}C$]. As the result, it is confirmed that the volume resistivity was the highest stability and volume resistivity value is $2.6{\times}10^{17}\;[\Omega{\cdot}cm]$ at 3.0[wt%]. And it is confirmed that the electrical conductivity property is sharply increased at low electric filed region and the conductivity current density is rapidly increased at high electric filed region.

  • PDF

Humidity effects on surface resistivities in PE and PP mixtures (PE 및 PP혼합 재료의 표면저항에 미치는 습도효과)

  • 강전홍;유황민;김한준;한상옥;김종석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.424-426
    • /
    • 2002
  • The surface and volume resistivity in the polymers, PE(polyethylene) and PP(polypropylene) mixtures are tested and measured by the ASTM D257(KS M3015) standard. Humidity effects on surface and volume resistivity in two polymers have been studied qualitatively at room temperature. The results of resistivity in these polymers show that the values of surface resistivity (and volume resistivity) at the humidity of 90% are remarkably small compared with those at the humidity of 50%, independing on applied voltage. When we varied the humidity in two polymers, it was found to takes many hours to recover into original surface resistivity (and volume resistivity) of these polymers.

  • PDF

The Quantitative Evaluation of Aging State of Field Composite Insulators Based on Trap Characteristics and Volume Resistivity-Temperature Characteristics

  • Liang, Ying;Gao, Li-Juan;Dong, Ping-Ping;Gao, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1355-1362
    • /
    • 2018
  • In order to obtain a better understanding of the ageing process of the field composite insulators, it is necessary to explore a quantitative-valuation method for the aging state evaluation. And the linear relationship between volume resistivity and temperature is proposed. In this paper, the composite insulators with different lengths of operating lives from two manufacturers were tested. The relationship between trap characteristics and volume resistivity-temperature characteristics were analyzed based on Thermal Stimulated Current (TSC), volume resistivity-temperature test, Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, the application of trap characteristics in the quantitative evaluation of aging state of composite insulators was discussed. The results showed that there was a general negative correlation between the relative variation ratio of trap charges and the volume resistivity-temperature characteristics. Meanwhile, the physicochemical properties would change with the aging time, which would result in the increasing of electron traps. Combined with the TSC and volume resistivity test results, the trap characteristic thresholds which indicated the serious age of the composite insulators had been proposed.