• Title/Summary/Keyword: Volumetric Data Visualization

Search Result 25, Processing Time 0.025 seconds

Isosurface Component Tracking and Visualization in Time-Varying Volumetric Data (시변 볼륨 데이터에서의 등위면 콤포넌트 추적 및 시각화)

  • Sohn, Bong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.225-231
    • /
    • 2009
  • This paper describes a new algorithm to compute and track the deformation of an isosurface component defined in a time-varying volumetric data. Isosurface visualization is one of the most common method for effective visualization of volumetric data. However, most isosurface visualization algorithms have been developed for static volumetric data. As imaging and simulation techniques are developed, large time-varying volumetric data are increasingly generated. Hence, development of time-varying isosurface visualization that utilizes dynamic properties of time-varying data becomes necessary. First, we define temporal correspondence between isosurface components of two consecutive timesteps. Based on the definition, we perform an algorithm that tracks the deformation of an isosurface component that can be selected using the Contour Tree. By repeating this process for entire timesteps, we can effectively visualize the time-varying data by displaying the dynamic deformation of the selected isosurface component.

Flow Visualization Model Based on B-spline Volume (비스플라인 부피에 기초한 유동 가시화 모델)

  • 박상근;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 1997
  • Scientific volume visualization addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for looking closely into structures and understanding their complexity and dynamics. In the past several years, a tremendous amount of research and development has been directed toward algorithms and data modeling methods for a scientific data visualization. But there has been very little work on developing a mathematical volume model that feeds this visualization. Especially, in flow visualization, the volume model has long been required as a guidance to display the very large amounts of data resulting from numerical simulations. In this paper, we focus on the mathematical representation of volumetric data sets and the method of extracting meaningful information from the derived volume model. For this purpose, a B-spline volume is extended to a high dimensional trivariate model which is called as a flow visualization model in this paper. Two three-dimensional examples are presented to demonstrate the capabilities of this model.

  • PDF

Peach & Pit Volume Measurement and 3D Visualization using Magnetic Resonance Imaging Data (자기공명영상을 이용한 복숭아 및 씨의 부피 측정과 3차원 가시화)

  • 김철수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.227-234
    • /
    • 2002
  • This study was conducted to nondestructively estimate the volumetric information of peach and pit and to visualize the 3D information of internal structure from magnetic resonance imaging(MRI) data. Bruker Biospec 7T spectrometer operating at a proton reosonant frequency of 300 MHz was used for acquisition of MRI data of peach. Image processing algorithms and visualization techniques were implemented by using MATLAB (Mathworks) and Visualization Toolkit(Kitware), respectively. Thresholding algorithm and Kohonen's self organizing map(SOM) were applied to MRI data fur region segmentation. Volumetric information were estimated from segemented images and compared to the actual measurements. The average prediction errors of peach and pit volumes were 4.5%, 26.1%, respectively for the thresholding algorithm. and were 2.1%, 19.9%. respectively for the SOM. Although we couldn't get the statistically meaningful results with the limited number of samples, the average prediction errors were lower when the region segmentation was done by SOM rather than thresholding. The 3D visualization techniques such as isosurface construction and volume rendering were successfully implemented, by which we could nondestructively obtain the useful information of internal structures of peach.

Volumetric NURBS Representation of Multidimensional and Heterogeneous Objects: Modeling and Applications (VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 모델링 및 응용)

  • Park S. K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.314-327
    • /
    • 2005
  • This paper describes the volumetric data modeling and analysis methods that employ volumetric NURBS or VNURBS that represents heterogeneous objects or fields in multidimensional space. For volumetric data modeling, we formulate the construction algorithms involving the scattered data approximation and the curvilinear grid data interpolation. And then the computational algorithms are presented for the geometric and mathematical analysis of the volume data set with the VNURBS model. Finally, we apply the modeling and analysis methods to various field applications including grid generation, flow visualization, implicit surface modeling, and image morphing. Those application examples verify the usefulness and extensibility of our VNUBRS representation in the context of volume modeling and analysis.

A Study on Three-Dimensional Image Modeling and Visualization of Three-Dimensional Medical Image (삼차원 영상 모델링 및 삼차원 의료영상의 가시화에 관한 연구)

  • Lee, Kun;Gwun, Oubong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1997
  • 3-D image modeling is in high demand for automated visual inspection and non-destructive testing. It also can be useful in biomedical research, medical therapy, surgery planning, and simulation of critical surgery (i.e. cranio-facial). Image processing and image analysis are used to enhance and classify medical volumetric data. Analyzing medical volumetric data is very difficult In this paper, we propose a new image modeling method based on tetrahedrization to improve the visualization of three-dimensional medical volumetric data. In this method, the trivariate piecewise linear interpolation is applied through the constructed tetrahedral domain. Also, visualization methods including iso-surface, color contouring, and slicing are discussed. This method can be useful to the correct and speedy analysis of medical volumetric data, because it doesn't have the ambiguity problem of Marching Cubes algorithm and achieves the data reduction. We expect to compensate the degradation of an accuracy by using an adaptive sub-division of tetrahedrization based on least squares fitting.

  • PDF

Occlusion-based Direct Volume Rendering for Computed Tomography Image

  • Jung, Younhyun
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • Direct volume rendering (DVR) is an important 3D visualization method for medical images as it depicts the full volumetric data. However, because DVR renders the whole volume, regions of interests (ROIs) such as a tumor that are embedded within the volume maybe occluded from view. Thus, conventional 2D cross-sectional views are still widely used, while the advantages of the DVR are often neglected. In this study, we propose a new visualization algorithm where we augment the 2D slice of interest (SOI) from an image volume with volumetric information derived from the DVR of the same volume. Our occlusion-based DVR augmentation for SOI (ODAS) uses the occlusion information derived from the voxels in front of the SOI to calculate a depth parameter that controls the amount of DVR visibility which is used to provide 3D spatial cues while not impairing the visibility of the SOI. We outline the capabilities of our ODAS and through a variety of computer tomography (CT) medical image examples, compare it to a conventional fusion of the SOI and the clipped DVR.

Volumetric Data Encoding Using Daubechies Wavelet Filter (Daubechies 웨이블릿 필터를 사용한 볼륨 데이터 인코딩)

  • Hur, Young-Ju;Park, Sang-Hun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.7 s.104
    • /
    • pp.639-646
    • /
    • 2006
  • Data compression technologies enable us to store and transfer large amount of data efficiently, and become more and more important due to increasing data size and the network traffic. Moreover, as a result of the increase of computing power, volumetric data produced from various applied science and engineering fields has been getting much larger. In this Paper, we present a volume compression scheme which exploits Daubeches wavelet transform. The proposed scheme basically supports lossy compression for 3D volume data, and provides unit-wise random accessibility. Since our scheme shows far lower error rates than the previous compression methods based on Haar filter, it could be used well for interactive visualization applications as well as large volume data compression requiring image fidelity.

Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle (오리피스 노즐 수직 2 상 유동의 물질전달 특성)

  • Kim, Dong Jun;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.817-824
    • /
    • 2015
  • Experiments were carried out to investigate the flow and mass transfer characteristics of an orifice nozzle. Measurements of primary and suction flow rates, dissolved oxygen concentration, and electric power were obtained. Vertically injected mixed-jet images were captured by a direct visualization technique with a high speed camera unit. The mass ratio, volumetric mass transfer coefficient, and mass transfer performance were calculated using the measured data. As the primary flow pressure increases, the mass ratio decreases slightly, while the volumetric mass transfer coefficient and electric power increase. As the primary flow pressure increases and the mass ratio decreases, the mass transfer rate increases because of the fine bubbles and wider distribution of the bubbles.

Volume Modeling of Scattered Data based on Weighted Alpha Shapes (가중치 알파 쉐이프를 기반으로 하는 산포된 자료의 볼륨 모델링)

  • Paik Jung-Min;Lee Kun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.3 s.100
    • /
    • pp.267-274
    • /
    • 2006
  • This paper describes a method to achieve different level of detail for the given volumetric data by assigning weight for the given data points. The relation between wavelet transformation and alpha shape was investigated to define the different level of resolution. Scattered data are defined as a collection of data that have little specified connectivity between data points. The quality of interpolant in volumetric trivariate space depends not only on the distribution of the data points in ${\Re}^3$, but also on the data value (intensity). We can improve the quality of an approximation by using wavelet coefficient as weight for the corresponding data points.

Topology Preserving Tetrahedral Decomposition Applied To Trilinear Interval Volume Tetrahedrization

  • Sohn, Bong-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.667-681
    • /
    • 2009
  • We describe a method to decompose a cube with trilinear interpolation into a collection of tetrahedra with linear interpolation, where the isosurface topology is preserved for all isovalues during decomposition. Visualization algorithms that require input scalar data to be defined on a tetrahedral grid can utilize our method to process 3D rectilinear data with topological correctness. As one of many possible examples, we apply the decomposition method to topologically accurate tetrahedral mesh extraction of an interval volume from trilinear volumetric imaging data. The topological correctness of the resulting mesh can be critical for accurate simulation and visualization.