• Title/Summary/Keyword: Vortex Generator

Search Result 109, Processing Time 0.027 seconds

Application of Vortex Generators on Smart Un-manned Aerial Vehicle(SUAV) (스마트 무인기에 부착한 Vortex Generator 효과)

  • Chung, Jin-Deog;Choi, Sung-Wook;Cho, Tae-Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.688-693
    • /
    • 2007
  • To improve aerodynamic efficiency of the Smart Un-manned Aerial Vehicle(SUAV), vortex generator was applied along the wing upper surface during SUAV tests. Vortex generator, initially used in TR-S2 configuration to enhance lift characteristic, increased lift coefficient. Meanwhile vortex generator produced excessive drag and eventually reduced lift-to-drag ratio. To examine the effect of vortex generator's height, three different heights of vortex generator were used for various SUAV configuration. Vortex generator of 3mm height used in TR-S4 configuration produced 3.1% increase in maximum lift coefficient and 1.5% reduction in lift-to-drag ratio.

A Study on the Heat Transfer from a Flat Plate and the Heat Transfer Enhancement by the Vortex Generator (평판에서의 열전달 및 와류발생기에 의한 열전달 촉진에 관한 연구)

  • Yoo, Seong-Yeon;Song, Si-Young;Park, Jong-Hark
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1447-1452
    • /
    • 2003
  • Vortex is very interesting flow phenomena on the heat transfer enhancement. In the present study, naphthalene sublimation technique is used to determine the average and local mass transfer coefficients on the flat plate with vortex generator. A parametric study with Reynolds number and angle of attack is carried out to investigate the heat transfer enhancement. The heat transfer coefficients on the flat plate with rectangular type and delta type vortex generator are compared with those of the flat plate without the vortex generator. Comparing heat transfer coefficients between rectangular type and delta type vortex generator, rectangular type vortex generator has much higher value than delta type vortex generator at the same condition.

  • PDF

Study of Vortex Generator for Aerodynamic Improvement (공력특성 향상을 위한 와류발생기에 대한 고찰)

  • Kim, Cheol-Wan;Shim, Jae-Yeol;Kim, Eung-Tai;Lee, Dae-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.483-486
    • /
    • 2008
  • Numerical Simulation was performed to investigate the role of vortex generator. Vortex generator installed on the upper surface of the wing, generates vortex flow, mimic the external flow with boundary layer flow and transfer energy from outside to wall boundary. Vortex generator, thus, retards the flow separation and increases the lift and drag of the wing.

  • PDF

A study on the cooling enhancement of electronic chips using vortex generator (와류발생기를 사용한 전자칩의 냉각촉진에 관한 연구)

  • Yu, Seong-Yeon;Ju, Byeong-Su;Lee, Sang-Yun;Park, Jong-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.973-982
    • /
    • 1997
  • Effect of vortex generator on the heat transfer enhancement of electronic chips is investigated using naphthalene sublimation technique. Experiments are performed for a single chip and chip arrays, and shape of vortex generator, position of vortex generator, stream wise chip spacing and air velocity are varied. Local and average heat transfer coefficients are measured on the top surface of simulated electronic chips, and compared with those obtained without vortex generator. In case of a single chip, heat transfer augmentation is seen only on the upstream portion of chip surface, while heat transfer enhancement is found on the whole surface for chip arrays. Rectangular wing type vortex generator is found to be more effective than delta wing.

A Study on Enhancement of UV Disinfection System Performance by the Vortex Generator (와동 발생기를 이용한 자외선 살균 시스템 성능 향상에 관한 연구)

  • Kim, Bong-Hwan;Ahn, Kook-Chan;Kim, Dong-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.24-29
    • /
    • 2007
  • The effectiveness of a UV(ultra violet) disinfection system depends on the characteristics of the waste water, flow conditions, the intensity of UV radiation, the amount of time the microorganisms are exposed to the radiation, and the reactor configuration. The wast water flow conditions are important factors in the design of UV disinfection system from the point of enhancement view of UV disinfection. The turbulent energy intensity in the wake by the vortex shedding are effective for UV radiation. Therewith the effectiveness of vortex generator is considered as a enhancement of UV disinfection. The experimental results presented give important evidences and explain that it is possible to predict UV disinfection performance based on flow experiments. An experimental investigation of two types of the vortex generator is presented. The qualitative and quantitative evaluations of the wake are made by flow visualization using smoke wire method and the measurement of vortex frequencies in the wind tunnel. From the experiment, following results were obtained that the delta wing type vortex generator is more effective than circular type because of the higher vortex frequencies and the smaller drag.

NUMERICAL STUDY ON THE WAKE OF A SINGLE MICRO VORTEX GENERATOR (Single micro Vortex Generator의 후류에 대한 수치적 연구)

  • Kim, G.H.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.494-499
    • /
    • 2011
  • One of the devices to prevent separated flow over a wing or a flap at high angle of attack is a vortex generator. In the present work, we numerically study the flow around a low-profile or micro vortex generator whose height is less than local boundary layer thickness which can delay separation with a minimum drag penalty owing to its very small wetted surface area. As a first step toward a parametric study to efficiently design this MVG flow control system, we simulate the flow around a single MVG on a flat plate. For the simulation, we employ OpenFOAM with Launder-Sharma ${\kappa}$-epsilon model. The analysis results are validated by comparing with experimental results of a rectangular MVG at an angle of attack of 10 degrees whose height is 20% of local boundary layer. Important results and aspects of this numerical study are discussed. We also simulate the flow around rectangular, triangular and trapezoidal MVGs and the results are compared

  • PDF

The Experimental Study of the Interaction Between the Flow rind Temperature Field and a Boundary Layer Due to a Variety of tole Height of a Vortex Generator (와동 발생기 높이 변화에 대한 경계층 내의 유동장과 온도장에 관한 실험적 연구)

  • Gwon, Su-In;Yang, Jang-Sik;Lee, Gi-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.82-93
    • /
    • 2002
  • The effects of the interaction between the flow and temperature field and a boundary layer due to a variety of the height of a vortex generator are experimentally investigated. The test facility consists of a boundary-layer wind tunnel with the vortex generator protruding from the bottom surface. In order to control the strength of the longitudinal vortices, the angle of attack and the spacing distance of the vortex generator are 20 degree and 40 mm, respectively. The height of the vortex generator (H) is 15 mm, 20 mm and 30 mm and the cord length of it is 50 mm. Three-component mean velocity measurements are made using a 5-hole probe system and the surface temperature distribution is measured by the hue capturing method using thermochromatic liquid crystals. By using the method mentioned above, the following conclusions are obtained from the present experiment. The boundary layer is thinned in the downwash region where the strong downflow and the lateral outflow of the boundary layer fluid occur and thickened in the upwash re,3ion where the longitudinal vortex sweeps low momentum fluid away from the bottom surface. In case that the height of the vortex generator increases, the averaged circulation and the maximum vorticity of the vortex pair decrease. The contours of the non-dimensional temperature show the similar trends fur all the cases (H=15 mm, 20 mm and 30 mm). The peak augmentation of the distribution of the local non-dimensional temperature occurs in the downwash region near the point of minimum boundary-layer thickness.

Heat Transfer Enhancement in Cross-flow Heat Exchanger Using Vortex Generator (와류발생기를 사용한 직교류 열교환기의 열전달 촉진)

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil;Lee, Sang-Sub;Kim, Byeong-Chae;Park, Dong-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.61-66
    • /
    • 2003
  • Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator.

  • PDF

Study of Ship Wake Characteristics and the Propeller Cavitation by a Vortex Generator (와류생성기에 의한 선체반류 및 프로펠러 캐비테이션 특성 연구)

  • Seol, Hanshin;Ahn, Jong-Woo;Kim, Gun-Do;Park, Young-Ha;Kim, Sung-Pyo;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.10-16
    • /
    • 2021
  • This paper systematically investigates and correlates pressure fluctuation and nominal wake characteristics according to the angle of the vortex generators by introducing the angle adjustment method of the Vortex Generator (VG). The vortex generators are installed at the port and starboard of a model ship. The vortex generator performance test is executed on a model ship installed in the Large Cavitation Tunnel (LCT) and the angle of VG is freely controlled by a servo motor. The systematic test results for the vortex generator show that the well-designed VG is an effective appendage for reducing the pressure fluctuation level and shows the direction of VG's angular design optimization.

Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder (원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.