• Title/Summary/Keyword: WC-Ni

Search Result 74, Processing Time 0.03 seconds

Electrodeposition Behavior of Ni-WC Composite Coatings with Variation of WC Particle Size (WC 분말 크기에 따른 Ni-WC 복합 도금층의 특성 거동에 관한 연구)

  • Kim, Dae-Geun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.115-120
    • /
    • 2006
  • The codeposition behavior of WC particles from an additive-free nickel sulfate and sulfamate solution has been investigated. Electroplating of Ni/WC composites was carried out at different current density with variation of WC particle size. The Guglielmi adsorption mechanism is applied to the electroplating of the fine WC in Ni matrix. The contents of WC in Ni composite coating were increased both by increasing current density and WC concentration in the bath. The hardness of Ni/WC composite coating at low current density is higher than that at high current density since finer WC particles dispersed through the coating. The codeposition behaviors of Co coated WC particles were also investigated. Conducting layer of particles promoted the codeposition behavior of Ni/WC-Co composite coatings.

Fabrication of Ultra fine WC-Ni Hard Materials by Rapid Sintering Process

  • Kim Hwan-Cheol;Oh Dong-Young;Shon In-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2004.11a
    • /
    • pp.98-99
    • /
    • 2004
  • (1) Using high-frequency induction heating sintering and spark plasma sintering method, the densification of WC-Ni hard materials was accomplished using ultra fine power of Ni and WC. (2) Nearly fully dense WC-Ni could be obtained within 1 min. (3) Relative density and mechanical properties of WC-Ni obtained by HFIHS were high than those obtained by SPS. And WC grain size made by HFIHS was smaller than that made by SPS. (4) The fracture toughness and hardness values of WC-8Ni, WC-10Ni, and WC-12Ni made by HFIHS were $13MPa{\cdot}m^{1/2}\;and\;1950kg/mm^2,\;13.5Mpa{\cdot}m^{1/2}\;and\;1810kg/mm^2,\;14.4MPa{\cdot}m^{1/2}\;and\;1690kg/mm^2$, respectively for 60MPa and an induced current for 90% output of total capacity, 15KW. (5) The fracture toughness and hardness values of WC-8Ni, WC-10Ni, and WC-12Ni made by SPS were $12.2MPa{\cdot}m^{1/2}\;and\;1796kg/mm^2,\;12.9MPa{\cdot}m^{1/2}\;and\;1725kg/mm^2,\;13.6MPa{\cdot}m^{1/2}\;and\;1597kg/mm^2$, respectively for 60MPa and the electric current of 2500 A

  • PDF

Characteristic Evaluation of WC Hard Materials According to Ni Content Variation by a Pulsed Current Activated Sintering Process (펄스전류활성 소결 공정을 이용한 Ni 함량변화에 따른 WC 소재의 특성평가)

  • Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.672-677
    • /
    • 2020
  • Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC-Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 µm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.

The Determination of Stress Distribution in WC-Ni Cemented Carbide Composites by Neutron Diffraction

  • Seol, Kyeongwon
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.232-238
    • /
    • 1995
  • The thermal stress distribution of WC and Ni binder phases In WC-26st.%Ni and WC-6wt.%Ni composites has been investigated over the temperature range 100-900 K using a time-of-flight neutron diffractometer. To determine the stress distribution, the breadths of WC and Ni peaks in the reference powder and the composites were analyzed. The peak breadths were corrected for particle size effect using a procedure based on the integral peak breadth method of particle size-strain analysis. The result shows a broad range of strain, and thus stress, is present in the WC and Ni binder phases of the composites. The strain distribution of both phases broadens as the temperature decreases, and some fraction of total strain distribution of the WC phase remains tensile regardless of the temperature. The strain distribution of the WC phase broadens as the binder content increases, and that of Ni binder phase broadens as the binder content decreases, which means the strain distribution broadens as the absolute value of residual stress increase.

  • PDF

Property Evaluation of Tungsten-Carbide Hard Materials as a Function of Binder (소결조제 변화에 따른 텅스텐카바이드 소결체 특성평가)

  • Kim, Ju-Hun;Oh, Ik-Hyun;Lee, Jeong-Han;Hong, Sung-Kil;Park, Hyun-Kuk
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.132-137
    • /
    • 2019
  • Tungsten carbide (WC) hard materials are used in various industries and possess a superior hardness compared to other hard materials. They have particularly high melting points, high strength, and abrasion resistance. Accordingly, tungsten carbide hard materials are used for wear-resistant tools, cutting tools, machining tools, and other tooling materials. In this study, the WC-5wt.%Co, Fe, Ni hard materials are densified using the horizontal ball milled WC-Co, WC-Fe, and WC-Ni powders by a spark plasma sintering process. The WC-5Co, WC-5Fe, and WC-5Ni hard materials are almost completely densified with a relative density of up to 99.6% after simultaneous application of a pressure of 60 MPa and an electric current for about 15 min without any significant change in the grain size. The average grain size of WC-5Co, WC-5Fe, and WC-5Ni that was produced through SPS was about 0.421, 0.779, and $0.429{\mu}m$, respectively. The hardness and fracture toughness of the dense WC-5Co, WC-5Fe, WC-5Ni hard materials were also investigated.

Fabrication of WC-Ni-Si-B4C Composite and Diffusion Bonding with Stainless Steel (WC-Ni-Si-B4C계 초경합금 제조 및 스테인레스 스틸과의 확산접합)

  • Won, Jong-Wun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.594-598
    • /
    • 2015
  • The effects of Ni on the mechanical properties of WC-Xwt.%Ni-1.5wt.%Si-1.1wt.%$B_4C$ composite (X = 21.6, 23.6, 25.6 and 27.6 wt.%) were investigated in order to replace Co with Ni as the binder metal for hard materials based on WC-Co system. Using X-ray diffraction, optical microscopy, field-emission scanning electron microscopy results, the microstructure, pore distribution and grain size of the composites sintered at $1,150^{\circ}C$ were examined with different fraction (X = 21.6, 23.6, 25.6 and 27.6 wt.%) of binder metal Ni. The average WC grain size of the $WC-Ni-Si-B_4C$ composites was about $1{\mu}m$. The Rockwell hardness : A (HRA) and transverse rupture strength were about 88HRA and $110kgf/mm^2$, respectively. The obtained sample was bonded with SM45C at a temperature of $1,050^{\circ}C$. The thickness and mechanical properties of the bonded area were investigated with different dwell time at a bonding temperature of $1,050^{\circ}C$.

One-pot Synthesis of Nickel and Tungsten Carbide Nanoparticles Supported Mesoporous Carbon Electrocatalyst for Oxygen Reduction Reaction (산소환원반응을 위한 니켈-텅스텐 카바이드 나노입자 담지 메조포러스 카본 촉매의 단일 합성 및 그 특성 평가)

  • Kim, Hyemin
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.179-184
    • /
    • 2018
  • In this study, Ni and tungsten carbide (WC) nanoparticles are simultaneously synthesized with the mesoporous carbon nanoparticles (CNP) using a solution plasma processing (SPP) in the benzene. The Ni and WC nanoparticles were formed through the sputtering effect of electrodes during discharge, and mean time CNP were formed through reduction reaction. TEM observation showed that loaded Ni and WC nanoparticles were evenly dispersed on the CNP. The results of electrochemical analysis demonstrated that an introduction of Ni nanoparticles promoted to improve catalytic activity for oxygen reduction reaction (ORR). Moreover, Ni-WC/CNP lead to fast electron transfer process compared to that of WC/CNP. Therefore, the inexpensive Ni-WC/CNP might be a promising as catalytic material for cathodes in fuel cell applications.

Effect of Secondary Carbide Addition on Properties of $Ti(C_{0.7}N_{0.3})-Ni$ Cermets

  • Ahn, S.;Kim, H.;Kang, S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.107-108
    • /
    • 2006
  • The effect of WC or NbC addition on various properties of Ti(C0.7N0.3)-Ni cermets was investigated. The microstructure oj Ti(C0.7N0.3)-xWC-20Ni showed a typical core/rim structure, irrespective of the WC content, whereas the structure oj Ti(C0.7N0.3)-xNbC-20Ni was different and was dependent on the NbC content. The hardness (HV) and the fracture toughness (KIC) had a tendency to increase marginally, while the coercive force (HC) and the magnetic saturation $(4{\pi}{\sigma})$ decreased gradually with an increase in WC or NbC content in the systems studied. In addition, increasing WC content in Ti(C0.7N0.3)-xWC-20Ni system, decarburization was retarded, while denitrification was accelerated

  • PDF

Production of the ultra fine-composite powders of WC-Co and WC-Ni (초미립의 탄화 텅스텐-코발트와 탄화 텅스텐-니켈 복합분말의 제조)

  • 김병재;윤병하
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.87-107
    • /
    • 1993
  • The grain size of the final products of WC-Co and WC-Ni composite powders is dependent on the size of the starting material and the conditions employed for the reduction and carburization. APT-Co and -Ni com-plex salts were prepared by the substitution reaction between ammonium ions in APT and the metal ions in Co(NO3)2 and Ni(NO3)2 solutions of different concentrations(0.1 to 0.7M) at $50^{\circ}C$ and the grain sizes of the com-plex salts was $0.54~0.76\mu\textrm{m}$. The complex which calcined the complex salts at $700^{\circ}$~80$0^{\circ}C$ for 60min. were 0.2~0.5$\mu\textrm{m}$. W-Co($5.92^{\circ}C$) and -Ni(6.95%) powders which reduced the complex oxides with H2d atmo-sphere(flow rate;600cc/min.) at $700^{\circ}$~$800^{\circ}C$ for 60min. were $0.5~0.6\mu\textrm{m}$. The mean grain sizes of WC-Co and WC-Ni composite powders which carburized both complex metals of W-Co and W-Ni at $800^{\circ}C$ for 60min. were $0.5~0.6\mu\textrm{m}$, and take place the coarsening of the grain above $800^{\circ}C$ and the optmium ratio of C3H8 and H2 was 0.2 for the control of the free carbon. The effect of Co contents on the particle sizes decreased from 0.4 to $0.25\mu\textrm{m}$ with increasing the content from 2.0 to 7.6w%. The activation energies on the reductions of oxides and the formations of carbides were as follows ; W-Co : Q = 8.7 kcal/mole, W-Ni : Q = 8.1 kcal/mole, WC-Co pow-der : Q = 17.8 kcal/mole, WC-Ni powder : Q = 16.6 kcal/mole.

  • PDF