• Title/Summary/Keyword: Wall law or Wall function

Search Result 5, Processing Time 0.021 seconds

ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION (LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석)

  • Jang, Yong-Jun
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.

An Inner Region Velocity-Profile Formula of Turbulent Flows on Smooth Bed (매끄러운 하상위 난류의 내부 영역 유속 분포 공식)

  • Yu Kwon-Kyu;Yoon Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.737-744
    • /
    • 2006
  • The velocity of the inner region of turbulent flow on a smooth bed has complex profile which can not be described with a simple formula. Though there have been a couple of formulas describing the profile, most of them have very complex forms, i.e., with many terms, with integration form, or with implicit forms. It means that it is hard to use them or it is difficult to estimate their parameters. A new single formula that describes the velocity profile of the inner region of the turbulent flow on a smooth bed was proposed. This formula has a form of the traditional log-law multiplied by a damping function. Introducing only one additional parameter, it can describe the whole inner range nicely. It approximates the law-of-the-wall in the vicinity of the bed and approaches to the log-law in the overlap region. The added parameter, damping factor, can be estimated very easily. It is not sensitive to the Reynolds number change and the velocity profile calculated by the formula does not change much due to the change of the parameter.

A Study on the Use of Police Force in the Public Assembly: Focused on the Vehicle-wall-blocking and water cannon (집회현장에서의 경찰의 물리력 사용현황과 개선방안: 차벽과 물포 사용을 중심으로)

  • Hwang, Mun-Gyu
    • Korean Security Journal
    • /
    • no.50
    • /
    • pp.307-337
    • /
    • 2017
  • The freedom of assembly is the fundamental freedoms guaranteed by the Constitution. However, as far as our reality is concerned, the freedom of assembly is guaranteed only when it is under the control of the police, and otherwise it is perceived as an object to be suppressed. Police say even that they will not tolerate even a small illegal law while referring to the "broken window theory". Therefore, regardless of the peaceful nature of the rally, it is too obsessed with 'compliance'. This attitude is causing the citizens who participated in the assembly to be put to the object to be suppressed. This paper analyzes the requirements and current status of police force, focusing on the vehicle-wall-blocking and water cannon as a means of using the police force, which is a recent problem, and suggests ways to improve it. First of all, the installation of the wall cuts off the essential communication function of the assembly by separating the meeting place from the object of protest. Thus, despite the warning for prevention in the face of illegal acts, other than installing a barrier, it should be allowed only in the 'urgent case where there is a risk of causing damage to the life, body or property of the person'. Without this urgency, the vehicle-wall-blocking should not be allowed to be proactive as well as preventive. Secondly, the water cannon is a police force that is likely to harm people's life and body. Therefore, aiming shots, which could pose a significant risk to the human body, should in principle be prohibited. However, considering its risk, it should be supplementary used only when there is no other alternative, only when the direct risk to the legal interest of the other person or the order of public well-being is 'obvious'. In addition, as for the use standard of such a thing, it is necessary to be specified by law.

  • PDF

Torsion of Hypothetical Single-Wall Silicon Nanotubes (가상의 단일벽 실리콘 나노튜브의 비틀림)

  • 변기량;강정원;이준하;권오근;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1165-1174
    • /
    • 2003
  • The responses of hypothetical silicon nanotubes under torsion have been investigated using an atomistic simulation based on the Tersoff potential. A torque, proportional to the deformation within Hooke's law, resulted in the ribbon-like flattened shapes and eventually led to a breaking of hypothetical silicon nanotubes. Each shape change of hypothetical silicon nanotubcs corresponded to an abrupt energy change and a singularity in the strain energy curve as a function of the external tangential force, torque, or twisted angle. The dynamics o silicon nanotubes under torsion can be modelled in the continuum elasticity theory.

Some characteristics of an interior explosion within a room without venting

  • Feldgun, V.R.;Karinski, Y.S.;Yankelevsky, D.Z.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.633-649
    • /
    • 2011
  • The paper presents a study aimed at understanding some characteristics of an interior explosion within a room with limited or no venting. The explosion may occur in ammunition storage or result from a terrorist action or from a warhead that had penetrated into this room. The study includes numerical simulations of the problem and analytical derivations. Different types of analysis (1-D, 2-D and 3-D analysis) were performed for a room with rigid walls and the results were analyzed. For the 3D problem the effect of the charge size and its location within the room was investigated and a new insight regarding the pressure distribution on the interior wall as function of these parameters has been gained. The numerical analyses were carried out using the Eulerian multi-material approach. Further, an approximate analytical formula to predict the residual internal pressure was developed. The formula is based on the conservation law of total energy and its implementation yields very good agreement with the results obtained numerically using the complete statement of the problem for a wide range of explosive weights and room sizes that is expressed through a non-dimensional parameter. This new formula is superior to existing literature recommendations and compares considerably better with the above numerical results.