• Title/Summary/Keyword: Warm consolidation behavior

Search Result 3, Processing Time 0.019 seconds

Consolidation of Cu-based amorphous particles (Cu계 비정질 입자의 가압 성형)

  • Kang E. Y.;Chung Y. H.;Yoo H. G.;Park J. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.273-276
    • /
    • 2005
  • Packing characteristics of amorphous alloy particles were investigated by scanning electron microscopy, compositional analysis, micro-hardness test and finite element method (FEM). Electroless Ni-plating was made on the surface of the Cu-based amorphous particles before consolidation in ambient atmosphere at an intermediate region of glass transition and crystallization temperatures $(T_g\;and\;T_x)$. Some parts of the Ni-layer in the interfaces of the consolidated particles disappeared, while some of them still remained without appreciable change in compositions. No cracks or fractures were found in the particles, which may occur at low temperatures below or near $T_g$ as anticipated by the FEM analysis. Crystallization and change in hardness were not observed after consolidation.

  • PDF

Deformation Behavior of $CU_{54}Ni_6Zr_{22}Ti_{18}$ Bulk Amorphous Alloy during Multi-Pass Warm Rolling (동계 벌크 아몰퍼스의 다단 온간 압연시 변형 거동)

  • Park E. S.;Kim H. J.;Bae J. C.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.139-142
    • /
    • 2005
  • Cu-Ni-Zr-Ti bulk amorphous thin strips were produced by multi-pass warm rolling of the amorphous powder at temperatures in the supercooled liquid region. Process variables for rolling of the bulk amorphous strips were properly controlled to prevent onset of crystallization and failure during rolling up to three passes. During rolling of the amorphous powder, both the deformation and densification took place and the newly developed surface on the deformed amorphous particles enhances the consolidation leading to an increase in the strength. The strain state during rolling was analyzed by FEM.

  • PDF

Deformation behavior in Cu-based bulk amorphous alloys composite during compression (동기지 동계 Bulk Amorphous 복합재의 압축 변형거동)

  • Lee C. H.;Kim J. S.;Park E. S.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF