• Title/Summary/Keyword: Warm forming

Search Result 170, Processing Time 0.025 seconds

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

A Study on Warm Forming Technology of Car Body Reinforced Dash Using Magnesium Alloy Sheet (마그네슘 합금 판재를 활용한 차체 Reinforced Dash 부품 온간성형 공정 연구)

  • Park, Dong Hwan;Tak, Yun Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.519-524
    • /
    • 2014
  • The use of light weight magnesium alloy offers significant potential towards improvement of the automotive fuel efficiency. However, the application of formed magnesium alloy components in auto-body structures is restricted due to the low formability at room temperature and lack of knowledge for processing magnesium alloys at elevated temperatures. In this study, a warm tensile test of magnesium alloys was performed to measure tensile strength and elongation. An improvement in formability was confirmed at increased temperatures above about $250^{\circ}C$. Car body warm forming technology was conducted for forming forming reinforced dash components of the magnesium alloy AZ31B sheet at elevated temperatures.

Study on the forming Limit Diagram of Steel Sheets for the Oil Pan of Automobile at the Warm Forming Condition (오일팬용 재료의 온간 성형한계도에 관한 연구)

  • 이항수;오영근;최치수
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.670-680
    • /
    • 2000
  • The purpose of this study is to provide the database of forming limit diagram applicable to the warm forming of oil pan. The test materials are SCP1 and SCP3C with the thickness of 1.4mm which is used for the oil pan of automobile. The testing temperature is 5$^{\circ}C$~15$0^{\circ}C$ which is In the range of practical usage. The results are the forming limit diagram limiting dome height and the maximum punch load at each temperature such as 5$^{\circ}C$, $25^{\circ}C$, 6$0^{\circ}C$, 9$0^{\circ}C$, 12$0^{\circ}C$ and 15$0^{\circ}C$. From these results, we can see that the forming limit curves are translated depending upon the temperature and that FLC at low temperature is higher than at high temperature. Both of limiting dome height and maximum punch load also decrease as the temperature increases. Present results can be useful for die trial and forming analysis as a tool of evaluating the forming severity for the sheet metal forming processes at the warm working condition by comparing the practical strains with FLC.

  • PDF

Effect of Forming Temperature on Spring-back in Hot Forming Quenching of AA6061 Sheet (AA6061 판재의 핫 포밍 퀜칭 공정에서 성형온도가 스프링백에 미치는 영향)

  • Shim, I.B.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • Aluminum alloys are widely used in automotive industry because of their high strength-to-density ratio and excellent corrosion resistance. However, conventional cold stamping of aluminum alloys leads to low formability and excessive spring-back. To overcome these problems, Hot Forming Quenching (HFQ) is applied to manufacture automotive part using aluminum alloy. The purpose of this study is to investigate effect of forming temperature on spring-back in HFQ of T6 heat treated AA6061 sheet. In this study, hat shape forming test was adopted to evaluate spring-back characteristics according to various forming temperatures. In additions, the test was also performed with warm forming conditions in comparison with dimensional accuracy of HFQed part. The experimental results showed that dimensional accuracy of HFQed part was superior to warm formed part and amount of spring-back was decreased as forming temperature rise.

Comparison of Warm Deep Drawability of Stainless Steel Sheet Between Crank Press and Hydraulic Press (크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교)

  • Kim, Jong-Ho;Choi, Chi-Soo;Na, Kyoung-Hoan
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.345-352
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results from experiments performed at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film are made both in a crank and hydraulic press for two kinds of specimens. The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydraulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability, such as forming temperature, speed of press and cooling of punch are examined and discussed.

  • PDF

Formability Test in Warm Forming Simulation of Magnesium Alloy Sheet Using FLD (마그네슘 합금 판재의 온간성형 해석에서 FLD를 이용한 성형성 평가)

  • Lee, M.H.;Kim, H.K.;Kim, H.K.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, the failure in circular cup deep drawing simulation at warm temperature is predicted using forming limit diagram (FLD). The FLD is used in sheet metal forming analysis to determine the criterion for fracture prediction. The simulation with heat transfer of circular cup deep drawing at warm temperature was conducted. To predict the failure, the simulation with heat transfer used FLD at temperature in the vicinity of maximum thinning. The result of the simulation with heat transfer shows that the drawn depth increases with increasing temperature and is in accord with the experimental results above $150^{\circ}C$. The FLD provides a good guide for the failure prediction of warm forming simulation with heat transfer.

  • PDF

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets(Part 1 : Experiment) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 ( 1부 : 실험 ))

  • 금영탁;유동열;한병엽
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.202-207
    • /
    • 2003
  • In order to examine the springback amount and material properties of aluminum alloy sheets (AL1050 and AL5052) in the warm forming which forms the sheet above the room temperature, the stretch bending and draw bending tests and tensile test in various high temperatures are carried out. The warm forming temperature 15$0^{\circ}C$ is a transition in terms of the material properties: over the forming temperature 15$0^{\circ}C$, them $\sigma$$_{YS}$ , $\sigma$$_{TS}$ , E, K, n, etc. are bigger but $\varepsilon$ and plastic strain ratio are smaller. Below the forming temperature 15$0^{\circ}C$, there are no big differences in material properties as the forming temperature changes. AL5052 sheet has more springback effect than AL1050 sheet. While the springbacks of AL5052 and AL1050 sheets show a big reduction over the warm forming temperature 15$0^{\circ}C$ in the stretch bending test, the springback rapidly reduces in the warm forming temperature 15$0^{\circ}C$-20$0^{\circ}C$ for AL5052 sheet and 20$0^{\circ}C$-25$0^{\circ}C$ for AL1050 sheet in the draw bending test.

A Finite Element Analysis for Near-net-shape Forming of Al6061 Powder under Warm Pressing (온간 성형 하에서 Al 합금 분말의 정밀정형에 대한 유한요소해석)

  • Kim, Ki-Tae;Yang, Hoon-Chul;Kim, Jong-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.507-512
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of Al6061 powder was performed under warm pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain parts with better density distributions. To simulate densification and deformed shape of a powder compact during warm pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm pressing.

  • PDF

Warm Incremental Forming with Local Heating Apparatus (국부가열장치를 이용한 온간 무금형 점진 성형)

  • Kim, S.W.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.349-353
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.

  • PDF

A Study on Warm Incremental Forming of AZ31 Alloy Sheet (AZ31 합금 판재의 온간 점진 성형에 관한 연구)

  • Kim, S.W.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.373-379
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.