• Title/Summary/Keyword: Warping polynomial

Search Result 7, Processing Time 0.02 seconds

Quantization of the Crossing Number of a Knot Diagram

  • KAWAUCHI, AKIO;SHIMIZU, AYAKA
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.741-752
    • /
    • 2015
  • We introduce the warping crossing polynomial of an oriented knot diagram by using the warping degrees of crossing points of the diagram. Given a closed transversely intersected plane curve, we consider oriented knot diagrams obtained from the plane curve as states to take the sum of the warping crossing polynomials for all the states for the plane curve. As an application, we show that every closed transversely intersected plane curve with even crossing points has two independent canonical orientations and every based closed transversely intersected plane curve with odd crossing points has two independent canonical orientations.

Precision correction of satellite-based linear pushbroom-type CCD camera images (선형 CCD카메라 영상의 정밀 기하학적 보정)

  • 신동석;이영란;이흥규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.137-148
    • /
    • 1998
  • An algorithm developed for the precision correction of high resolution satellite images is introduced in this paper. In general, the polynomial warping algorithm which derives polynomial equations between GCPs extracted from an image and a base map requires many GCPs well-distributed over the image. The precision correction algorithm described in this paper is based on a sensor-orbit-Earth geometry, and therefore, it is capable of correcting a raw image using only 2-3 GCPs. This algorithm estimates the errors on the orbit determination and the attitude of the satellite by using a Kalman filter. This algorithm was implemented, tested and integrated into the KITSAT-3 image preprocessing software.

An Image Warping Method for Implementation of an Embedded Lens Distortion Correction Algorithm (내장형 렌즈 왜곡 보정 알고리즘 구현을 위한 이미지 워핑 방법)

  • Yu, Won-Pil;Chung, Yun-Koo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.373-380
    • /
    • 2003
  • Most of low cost digital cameras reveal relatively high lens distortion. The purpose of this research is to compensate the degradation of image quality due to the geometrical distortion of a lens system. The proposed method consists of two stages : calculation of a lens distortion coefficient by a simplified version of Tsai´s camera calibration and subsequent image warping of the original distorted image to remove geometrical distortion based on the calculated lens distortion coefficient. In the lens distortion coefficient calculation stage, a practical method for handling scale factor ratio and image center is proposed, after which its feasibility is shown by measuring the performance of distortion correction using a quantitative image quality measure. On the other hand, in order to apply image warping via inverse spatial mapping using the result of the lens distortion coefficient calculation stage, a cubic polynomial derived from an adopted radial distortion lens model must be solved. In this paper, for the purpose of real-time operation, which is essential for embedding into an information device, an approximated solution to the cubic polynomial is proposed in the form of a solution to a quadratic equation. In the experiment, potential for real-time implementation and equivalence in performance as compared with that from cubic polynomial solution are shown.

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

RBFNNs-based Recognition System of Vehicle License Plate Using Distortion Correction and Local Binarization (왜곡 보정과 지역 이진화를 이용한 RBFNNs 기반 차량 번호판 인식 시스템)

  • Kim, Sun-Hwan;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1531-1540
    • /
    • 2016
  • In this paper, we propose vehicle license plate recognition system based on Radial Basis Function Neural Networks (RBFNNs) with the use of local binarization functions and canny edge algorithm. In order to detect the area of license plate and also recognize license plate numbers, binary images are generated by using local binarization methods, which consider local brightness, and canny edge detection. The generated binary images provide information related to the size and the position of license plate. Additionally, image warping is used to compensate the distortion of images obtained from the side. After extracting license plate numbers, the dimensionality of number images is reduced through Principal Component Analysis (PCA) and is used as input variables to RBFNNs. Particle Swarm Optimization (PSO) algorithm is used to optimize a number of essential parameters needed to improve the accuracy of RBFNNs. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. Image data sets are obtained by changing the distance between stationary vehicle and camera and then used to evaluate the performance of the proposed system.

Lane Model Extraction Based on Combination of Color and Edge Information from Car Black-box Images (차량용 블랙박스 영상으로부터 색상과 에지정보의 조합에 기반한 차선모델 추출)

  • Liang, Han;Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • This paper presents a procedure to extract lane line models using a set of proposed methods. Firstly, an image warping method based on homography is proposed to transform a target image into an image which is efficient to find lane pixels within a certain region in the image. Secondly, a method to use the combination of the results of edge detection and HSL (Hue, Saturation, and Lightness) transform is proposed to detect lane candidate pixels with reliability. Thirdly, erroneous candidate lane pixels are eliminated using a selection area method. Fourthly, a method to fit lane pixels to quadratic polynomials is proposed. In order to test the validity of the proposed procedure, a set of black-box images captured under varying illumination and noise conditions were used. The experimental results show that the proposed procedure could overcome the problems of color-only and edge-only based methods and extract lane pixels and model the lane line geometry effectively within less than 0.6 seconds per frame under a low-cost computing environment.

Quantitative Analysis of MR Image in Cerebral Infarction Period (뇌경색 시기별 MR영상의 정량적 분석)

  • Park, Byeong-Rae;Ha, Kwang;Kim, Hak-Jin;Lee, Seok-Hong;Jeon, Gye-Rok
    • Journal of radiological science and technology
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In this study, we showed a comparison and analysis making use of DWI(diffusion weighted image) using early diagnosis of cerebral Infarction and with the classified T2 weighted image, FLAIR images signal intensity for brain infarction period. period of cerebral infarction after the condition of a disease by ischemic stroke. To compare 3 types of image, we performed polynomial warping and affined transform for image matching. Using proposed algorithm, calculated signal intensity difference between T2WI, DWI, FLAIR and DWI. The quantification values between hand made and calculated data are almost the same. We quantified the each period and performed pseudo color mapping by comparing signal intensity each other according to previously obtained hand made data, and compared the result of this paper according to obtained quantified data to that of doctors decision. The examined mean and standard deviation for each brain infarction stage are as follows ; the means and standard deviations of signal intensity difference between DWI and T2WI for each period are $197.7{\pm}6.9$ in hyperacute, $110.2{\pm}5.4$ in acute, and $67.8{\pm}7.2$ in subacute. And the means and standard deviations of signal intensity difference between DWI and FLAIR for each period are $199.8{\pm}7.5$ in hyperacute, $115.3{\pm}8.0$ in acute, and $70.9{\pm}5.8$ in subacute. We can quantificate and decide cerebral infarction period objectively. According to this study, DWI is very exact for early diagnosis. We classified the period of infarction occurrence to analyze the region of disease and normal region in DW, T2WI, FLAIR images.

  • PDF