• Title/Summary/Keyword: Wastewater Treatment Pond System

Search Result 26, Processing Time 0.025 seconds

Application of a Pond System to Korea for Treatment and Recycling of Wastewater (하수 처리 및 재활용 연못시스템의 국내 응용)

  • Yang, Hongmo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.108-117
    • /
    • 1995
  • The applicability to Korea is examined of a pond system which treats and recycles wastewaters. Air temperature and solar radiation of the pond systems at Corinne, Utah, and Eudora, Kansas, which are located in temperate regions of the U.S., are compared with those of Kimpo lying in the mid-western part of Korea. Analyzed are also $BOD_5$ and SS concentrations, algal concentrations, pH levels, and water temperature of the two systems. Air temperature of Kimpo is quite similar to that of the two systems, and solar radiation of Kimpo is more conducive than that of the systems to the growth of algae during summer. Analysis of $BOD_5$ and SS concentrations in the final effluent of the systems shows that they meet the secondary treatment standards. The study demonstrates that wastewater treatment pond system which is similar in design to the systems can be reliably utilized at Kimpo, Korea. A model is proposed which can integrate a pond system with aquaculture and agriculture.

  • PDF

Ecological Design of Estuarine Environment (하구환경의 생태적 설계)

  • 양홍모
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.2
    • /
    • pp.167-181
    • /
    • 1995
  • An Ecocomplex is proposed for ecological design of the estuarine environment of Han River, which is designed upon an alternative mamagement concept of estuarine environment. The concept reveals interrelationships among estuary, delta region and urban inland with inputs/outputs and feedbacks among them. The Ecocomplex emphasizes an integration of wastewater treatment with aquaculture, agriculture and recreation, and carries out ecological treatment, recycling, and harvest processes. A module of wastewater treatment pond system is employed in the Ecocomplex, which treats a flow of 3,786 ㎥/day and is composed of a four-facultative-pond series. Treatment ponds stabilize wastewater discharged from the urban area, and concurrently produce algae for commercial or recreational fish farming. Effluent from treatment and fish ponds is reused for agricultural production. Through the waste-algae-fish-vegetable-recreation processes, wastewater from the urban settlement is recycled back to the urban ecosystem. This resource-conserving design approach can maintain a sustainable urban ecosystem, managing an estuarine environment more naturally, healthly, and economically.

  • PDF

Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season (연못을 이용한 동절기 인공습지 오수처리수의 추가 처리)

  • Yoon, Chun-Gyeong;Jeon, Ji-Hong;Kim, Min-Hee;Ham, Jong-Hwa
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

Stormwater treatment using Wetland and Pond (습지와 유수지를 이용한 강우 유출수 처리)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong;Koo, Won-Suk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.575-578
    • /
    • 2003
  • Constructed wetlands have become a popular technology for treating contaminated surface and wastewater. In this study, the field experiment to reduce nonpoint source pollution from watershed runoff during rainy day using wetland and pond. TSS and T-N removal rate of wetland-pond system and pond-wetland system was 91% and 73%, 94% and 70%, respectively and values were same range. $BOD_5$ and T-P removal rate of pond-wetland system (38% and 78%) was higher than wetland-pond system (27% and 62%). overall, pond-wetland system is more useful than wetland-pond system to control NPS.

  • PDF

Feasibility Study of Natural Systems for Sewage Treatment and Agricultural Reuse (자연정화방법에 의한 오수처리와 농업적 재이용 타당성 검토)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.194-206
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent to agricultural reuse of reclaimed water. The constructed wetland and pond system was installed in Konkuk University and the effluent from septic tank of school building was used as an influent to the wetland system. The effluent of the wetland was used as an influent to pond systems. The influent concentrations of total coliform(TC), fecal coliform (FC), and E. coli were about $10^5$MPN/100 ml, and they were reduced to less than 10,000 MPN/100 ml on average after wetland treatments, showing over 95 % removal. And they were further reduced to less than 1,000 MPN/100 ml in average, showing over 85∼93 % removal after pond treatment. Turbidity and SS were improved effectively on average and their pond effluent concentration was about 4.5 NTU and 9.8 mg/L in average, respectively Average $BOD^5$ concentrations were also reduced substantially to 9.3 mg/L with about 83 % removal rate after wetland and pond treatment systems. Nutrients removal was relatively low and removal rate for T-N and T-P was less than 43 and 44%, respectively after wetland and pond treatment. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper describes a preliminary result Iron pilot study and further investigations are recommended on the optimum design parameters before full scale application.

Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater (축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • A wastewater treatment pond system was developed for treatment and recycling of dairy cattle excreta of $5\;m^1$ per day. The wastes were diluted by the water used for clearing stalls. The system was composed of three ponds in series. A submerged gas collector for the recovery of methane was installed at the bottom of secondary pond with water depth of 2.4m. This paper deals mainly with performance of methane fermentation of secondary pond which is faclutative one. The average $BOD_5$, SS, TN, and TP concentrations of influent into secondary pond were 49.1, 53.4, 48.6, and 5.3 mg/l, and those of effluent from it were 27.9, 45.7, 30.8, 3.2 mg/l respectively. Methane fermentation of 2.4-meter-deep secondary pond bottom was well established at $16^{\circ}C$ and gas garnered from the collector at that temperature was 80% methane. Literature on methane fermentation of wastewater treatment ponds shows that methane bacteria grow well around $24^{\circ}C$, the rate of daily accumulation and decomposition of sludge is approximately equal at $19^{\circ}C$, and activities of methanogenic bacteria are ceased below $14^{\circ}C$. The good methane fermentation of the pond bottom around $16^{\circ}C$, about $3^{\circ}C$ lower than $19^{\circ}C$, results from temperature stability, anaerobic condition, and neutral pH of the bottom sludge layer. It is recommended that the depth of pond water could be 2.4m. Gas from the collector during active methane fermentation was almost 83% methane, less than 17% nitrogen. Carbon dioxide was less than 1% of the gas, which indicates that carbon dioxide produced in bottom sludges was dissolved in the overlaying water column. Thus a purified methane can be collected and used as energy source. Sludge accumulation on the pond bottom for a nine month period was 1.3cm and annual sludge depth can be estimated to be 1.7cm. Design of additional pond depth of 0.3m can lead to 15 - 20 year sludge removal.

  • PDF

Convergence Study on Organic Sludge Treatment System (유기성 슬러지 처리 시스템에 관한 융합연구)

  • Han, Doo-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.213-217
    • /
    • 2020
  • An eco-friendly water purifier was developed using natural minerals, plants, and sludge from water purification plants. A wastewater complex treatment system using this water purification agent was developed. The wastewater complex treatment system goes through the process of inflow of contaminated water, input of water purification agent, operation of a pressurized flotation device, sludge flotation, sludge collection and treatment water discharge. This device was applied to the removal of green algae in livestock desorption liquid, broiler washing water, factory wastewater, sewage treatment plant and pond to obtain excellent removal rate. The use of natural water purification agents for organic waste purification has not been investigated.

Methane Fermentation of Pit in Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 Pit 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • An integrated wastewater treatment pond system is developed for treatment and recycling of excreta from dairy cattle. It is composed of three ponds in series. A pit with a capacity of $10m^3$, 2-day hydraulic residence time, and overflow velocity of $1.5m^3m^{-2}day^{-1}$ is located internally in primary pond. It is designed for efficient sludge sedimentation and effective methane fermentation. It receives $5m^3/day$ of diluted cattle excreta by the water used for clearing stalls. A submerged gays collector for the recovery of methane is installed on the top of the pit. The average BOD_5 concentration of influent is 398.7mg/l. That of the effluent from primary pond is 49.2mg/l. About 88% of BOD_5 are removed in primary pond. It is assumed that about 60% of the influent BOD_5 is removed in the pit and that almost all of the carbon of the removed BOD_5 in the pit is converted to methane and carbon dioxide. Methane fermentation of the pit is well established at $16^{\circ}C$. This phenomena results from temperature stability, complete anaerobic condition, and neutral pH of the pit. Gas from the collector is almost 90% methane, less than 9% nitrogen, and less than 1% carbon dioxide. Thus a purified methane is produced, which can be used as energy source.

  • PDF

Aquaculture Recycling Effluent from a Pond System Treating Animal Excreta Ecologically (축산폐수 처리 연못시스템의 처리수 재활용 양어)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2000
  • Utilization of animal excreta in aquaculture can have potentials of high fish production and low maintenance costs for fish farming and it can reduce water pollution caused by animal waste disposal. Integration of wastewater treatment pond system with aquaculture has been utilized in many countries. Ecologically balanced pond ecosystem is formed through the stabilization of wastes, the growth of aquatic plants, and the cultivation of fish. The most appropriate fish for rearing in these ponds are those which can feed directly on phytoplankton, especially algae. Carp were introduced into a tertiary pond - water depth of 2.2 m, water surface area of $130\;m^2$, volume of $148\;m^3$ - of a pond system treating milk cow excreta. The carp production was $125g{\cdot}m^{-2}year^{-1}$ which falls into upper range of $18\;-\;137g{\cdot}m^{-2}year^{-1}$ of treated sewage-fed carp farming of other countries. Average $BOD_5$ and T-N of the pond was 19.8 and $21.0\;mg{\cdot}L^{-1}$ respectively, and the ecological environment of it was suitable for growth of carp. Several carp of 100g were introduced in August into a secondary pond of the treatment system, whose average $BOD_5$ and T-N was 27.9 and $30.8\;mg{\cdot}L^{-1}$ respectively. They were died within one week, which may be attributed to the depletion of dissolved oxygen at dawn. Effluents from primary treatment can be used in fish pond with dilution and those from secondary treatment can be directly funnelled into it. Waste stabilization pond treating animal excreta can be utilized for fish rearing when its water quality maintains secondary treatment level.

  • PDF

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.