• Title/Summary/Keyword: Wastewater reclamation and reusing system

Search Result 5, Processing Time 0.023 seconds

A study on the Reclamation and Reuse of Milk Manufacturing Wastewater (유가공폐수 처리수의 재이용에 관한 연구)

  • 곽필재;우달식;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.111-119
    • /
    • 1997
  • We met the continued population growth, contamination of both surface and groundwaters, deficiency of water resources, and increase of water demand. Wastewater reclamation and reusing system are important facilities in water resources planning aspect. The required water quality for reclamed wastewater varies with each application. This study was conducted to examine the possibilities of the wastewater reclamation and reusing on milk manufacturing wastewater. Biofiltration could reduce the COD$_{Cr}$, NH$_{3}$-N. Turbidty was reduced highly by coagulation. In conclusion, we identified the possibilities of wastewater reclamation and reusing on milk manufacturing wastewater's by biological activated carbon filter.

  • PDF

Study on Installation Capacities of Wastewater Reclamation and Reusing System Applying to Contact Aeration Process using Cost-benefit Analysis (경제성분석을 이용한 접촉폭기방식 중수도의 설치규모분석에 관한 연구)

  • Nam, Young-Woo;Park, Tae-Uk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1945-1954
    • /
    • 2000
  • This study provides economical installation capacities for wastewater reclamation and reusing system in 7 areas of South Korea applying to contact aeration process using NPV(net present value) model based on cost-benefit. First. considering only private benefits. economical installation capacities for wastewater reclamation and reusing system applying to contact aeration process in household use were more than $500m^3/day$ in Pusan. $1,000m^3/day$ in Taegu. $2,000m^3/day$ in Kwangju. However. installation capacities in Seoul. Inchen, Taejon, and Ulsan were not optimal for $3,000m^3/day$. Therefore, supply ways of wastewater reclamation and reusing system in household use in the latter areas were more optimal local recirculation system than individual recirculation system. Economical installation capacities for wastewater reclamation and reusing system in business use were more than $100m^3/day$ in Seoul. Pusan. and Kwangju and which were $300m^3/day$ in Taegu, Inchen, Taejon, and Ulsan. Economical installation capacities for wastewater reclamation and reusing system in commercial use were more than $100m^3/day$ in Seoul, Pusan, Taegu, Kwangju, Taejon, and Ulsan, and which were $300m^3/day$ in Inchen. Second, considering only social benefits. economical installation capacity for wastewater reclamation and reusing system applying to contact aeration process was more than $100m^3/day$.

  • PDF

Implementation of C-HMI based Real-time Control and Monitoring for Remote Wastewater Reclamation and Reusing System (C-HMI 기반의 원격지 중수도 설비 실시간 제어와 모니터링 구현)

  • Lee, Un-Seon;Park, Man-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.717-722
    • /
    • 2013
  • The wastewater reclamation and reusing system has been rising as an alternative of water resource exhaustion that the whole world is experiencing. In order to be able to bring about improvement of the existing wastewater reclamation and reusing system, this research has developed of Conversion-Human Machine Interaction (C-HMI) based real-time control and monitoring system such as a sensor module and gate module, web monitoring system. This system was communication almost-error-free in various environment and situation. As a result, we have achieved our goal that has to doing work correctly as a sensor and gateway module that communication error is less than 0.2% throughout the embodied system and add that it can be easily controled and configured as an interface equipment to a complex sensor of water quality. According to this, the construction of a database capable of analyzing and assessing collection, storage and various elements of reliable water quality and flow rate data can be possible.

A study on the device introduction of wastewater reclamation system a treated sewage (하수처리수를 활용한 중수도의 도입방안 연구)

  • Park, Rho-Sam;Park, Sang-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.23-33
    • /
    • 1999
  • After studying several methods of the application a device of a treated sewage in anticipation of the future shortage of the duty of water, we could have some conclusion as the following : Advanced treatment systems arc essential prerequisites in reusing a treated sewage. And in a short term, the application of reusing a treated sewage should go first to new building areas near the sewage but for the long run, it should cover the whole area of Taegu, it is desirable that the pipe line networks which include dual water systems as well as water supply should be spread throughout the whole city. The city authorities have to make every effort to step up publicity activities on this plan to all the citizens and building owners to steadily carry out this project and encourage private constructors to participate with the help of SOC. And for the long run, it is desirable that the application of reusing a treated sewage should be obligatory.

  • PDF

A Study on the Utilization of Effluent Treated by Double Process Using Fixed-media and Sand Filter Coated by Nano Silver for Wastewater Reclamation and Reusing System (고정상 담체와 은나노 모래여과를 이용한 이중 공정에서 처리수의 중수도 활용에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.317-323
    • /
    • 2006
  • This study focused on the availability of wastewater reclamation and reusing system as one of the alternatives against the global water shortage in near future, which system is composed of two treatment steps; first, wastewater is injected into upflow $A^2O$ biofilm process(anaerobic/anoxic/oxic) reactor filled with polyethylene fixed-media, and the effluent of 1st steps continuously passed through downflow nano silver sand filter. The pH of the effluent ranged from 7.39 to 8.06(average 7.84), the $COD_{Mn}$ was $8{\sim}18mg/L$(average 12.1 mg/L), and $BOD_5$ was $2.1{\sim}10.0mg/L$(average 4.9 mg/L), that met all the wastewater reclamation and reusing system criteria. Besides, the SS concentrations of the effluent which was $3{\sim}9mg/L$(average 4.95 mg/L) met the criteria(5 mg/L), showing 94.8% of average removal efficiency. The 99.1% of the average removal efficiency of the E-coliform did not met the criteria(Not detected), which indicates the needs for the following chlorine disinfection treatment with the residual chlorine concentration of above 0.2 mg/L. There are no bacteria on the sand surface coated by nano silver. The removal efficiency of T-N and T-P that could be included into the criteria in the future was 50.3% and 27.2% respectively.