• 제목/요약/키워드: Wave Transmission Coefficient

검색결과 148건 처리시간 0.02초

A Numerical Study on Pontoon Type Floating Breakwaters in Oblique Waves

  • Kim, Do-Young
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제3권1호
    • /
    • pp.23-28
    • /
    • 2000
  • A numerical investigation was made to examine characteristics of rectangular pontoon type floating breakwaters in oblique waves. Sway and heave wave exciting forces, roll moment acting on the floating breakwater and three motion reponses decrease as the incident wave angle increases for the most of the wave ranges. There exists a minimum wave transmission coefficient which is a function of wave frequency. In short wave range wave transmission coefficient increases as the incident wave angle increases. In long wave range, however, wave transmission coefficient decreases as the wave incident angle increases.

  • PDF

Analysis of Wave Transmission Characteristics on the TTP Submerged Breakwater Using a Parabolic-Type Linear Wave Deformation Model

  • Jeong, Jin-Hwan;Kim, Jin-Hoon;Lee, Jung-Lyul
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.82-90
    • /
    • 2021
  • Owing to the advantages of assuring the best views and seawater exchange, submerged breakwaters have been widely installed along the eastern coast of Korea in recent years. It significantly contributes to promoting the advancement of shorelines by partially inhibiting incident wave energy. Observations were carried out by a pressure-type wave gauge in the Bongpo Beach to evaluate the coefficients of wave transmission via a submerged breakwater, and the results obtained were compared with those of existing conventional equations on the transmission coefficient derived from hydraulic experiments. After reviewing the existing equations, we proposed a transmission coefficient equation in terms of an error function. Although it exhibited robust relationships with the crest height and breaking coefficient, deviations from the observed data were evident and considered to be triggered by the difference in the incident wave climate. Therefore, in this study, we conducted a numerical experiment to verify the influence of wave period on the coefficients of wave transmission, in which we adopted a parabolic-type mild-slope equation model. Consequently, the deviation from calculated results appears to practically cover all deviation range in the observed data. The wave period and direction of the incident wave increased, the transmission coefficient decreased, and the wave direction was determined to demonstrate a relatively significant influence on the transmission coefficient. It was inferred that this numerical study is expected to be used practically in evaluating the design achievement of the submerged breakwater, which is adopted as a countermeasure to coastal beach erosion.

파랑 차단 성능 향상을 위한 다열 잠제 사이의 최적 간격에 대한 연구 (Optimum Distance between Multiple Submerged Breakwaters for Wave Screening Performance Enhancement)

  • 조원철
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.82-87
    • /
    • 2006
  • Numerical analysis is performed on the wave transmission coefficient of various crown widths of the double-submerged breakwater and the triple-submerged breakwater, varying the distance between submerged breakwaters. The finite element method is used, and the fluid motion is considered as linearized two-dimensional potential flow. In case of the double- and triple-submerged breakwaters, as the width of submerged breakwater increases, the minimum wave transmission coefficient decreases and the wave period at which the minimum wave transmission coefficient occurs moves to a longer wave period the distance between submerged breakwaters at which the minimum wave transmission coefficient occurs becomes larger.

장주기파에 효율적인 부유식방파제 단면 형상에 대한 연구 (A Study on the Long-Wave Effective Cross Section of Floating Breakwater)

  • 안용호;류황진;김도영
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.133-138
    • /
    • 2000
  • In this paper some shapes of the FBW cross sections were examined to improve the performance of FBW for the long wave. Trapezoidal section and prominence section were examined. Linear potential theory is used and the boundary element method is use for numerical computation. Proper choice of the pontoon geometry may improve the transmission coefficient in the long wave range for a given wave period.

  • PDF

경사 입사파중 계류된 부유식 방파제의 운동응답과 투과율 해석 (Analysis on Motion Responses and Transmission Coefficients of a Moored Floating Breakwater in Oblique Incident Waves)

  • 조일형;표상우
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.6-13
    • /
    • 2009
  • Based on the boundary element method, the motion responses and transmission coefficients of a moored floating breakwater were investigated in oblique waves. To satisfy the outgoing radiation condition in the far field, the fluid domain was divided into inner and outer regions. The complete solution could be obtained by applying the matching conditions between the eigenfunction-based outer solution and BEM-based inner solution. Using the developed predictive tools, the wave exciting forces, added mass, damping coefficients, motion responses, and transmission coefficients were assessed for various combinations of breakwater configuration, wave heading, mooring cables properties, and wave characteristics. It was found that the transmission coefficient for a moored floating breakwater was closely dependent on the motion responses, which were greatly amplified at the resonant frequencies.

Reflection and Transmission Coefficients for Rubble Mound Breakwaters in Busan Yacht Harbor

  • Park, O Young;Dodaran, Asgar Ahadpour;Bagheri, Pouyan;Kang, Kyung Uk;Park, Sang Kil
    • 한국해양공학회지
    • /
    • 제27권6호
    • /
    • pp.90-94
    • /
    • 2013
  • This paper reports the results obtained for there flection and transmission coefficients on rubble mound breakwaters in Busan Yacht Harbor. A2D physical model test was conducted in the wave flume at the Coastal Engineering Research Laboratory at Pusan National University, Busan, South Korea. In this study, physical model tests were completed to further our understanding of the hydrodynamic processes that surround a rubble mound structure subjected to irregular waves. In particular, the reflection and transmission coefficients, as well as the spectrum transformation, were analyzed. This analysis suggests that with an increase in wave height around a rubble mound, the reflection coefficient drastically increases at each water level (HHW or MSL or LLW). Moreover, when the water level changes from HHW to LLW, the reflection coefficient is suddenly reduced. A further result of the analysis is that the transmission coefficient strongly drops away from the rear of the structure. Finally, in regard to the rubble mound breakwater in Busan Yacht Harbor, a consideration of the reflection and transmission coefficients plays an important role in the design.

반사파가 존재하는 음향장에서의 소음기의 음향성능 측정 (The Acoustic Performance Measurement of Silencers in Reflective Field)

  • 이성현;이정권;최원용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.625-628
    • /
    • 2005
  • Silencers are extensively used for reducing noise in an exhaust system of internal combustion Engine and fluid machineries. The prediction and measurement of the transmission loss as the acoustic performance of silencers are important in early design stage. In the measurement of transmission loss, the semi-anechoic terminations are general used for reducing unwanted effects by reflecting wave. However it is very hard to remove reflecting wave perfectly. So the research about the error made by reflecting wave is important. The analysis about errors made by reflections and modification techniques are proposed. For an application example, the diesel particulate filter (DPF) is chosen. The transmission loss of DPF is measured with and without considerations of reflecting wave.

  • PDF

장주기파에 효율적인 부유식방파제에 대한 연구 I: 사다리꼴과 요철 단면형상에 대하여 (A Study on the Long-Wave Effective Floating Breakwater I: On Trapezoid and Prominence Cross Section)

  • 김도영;안용호
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.7-11
    • /
    • 2001
  • In this paper, trapezoid sections and prominence sections were examined to improve the performance of floating breakwater in long waves. The linear potential theory is used and the boundary element method with a matching boundary is employed for numerical computation. The effects of the side slope of the trapezoid section and the geometry ratio of the prominence section on the floating breakwater were examined. It was found that trapezoid sections show lower transmission coefficients than the rectangular sections in the long wave range. In prominence sections the size of the sides are more important than the size of the top. Proper choices of the pontoon type geometry may move the local minimum point of the wave transmission coefficient toward the longer wave ranges and improve the performance of the floating breakwater in the long wave range for a given wave period.

  • PDF

Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network

  • Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.313-325
    • /
    • 2022
  • Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.

직립 슬릿판에 의한 반사율과 투과율 해석 (On an Analysis of Reflection and Transmission Coefficients by a Vertical Slit Plate)

  • 조일형;김남형
    • 한국해양공학회지
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, a numerical model to analyze the performance of a vertical slit-type wave absorber is developed under the assumption of inviscid water waves. The formulation combines the linear potential theory with a semi-empirical description of the eddy-shedding at a slit-type wave absorber. We investigated the reflection coefficients over a wide frequency range for a vertical slit-type wave absorber both with and without a solid rear wall. Model test was conducted at KRISO' s two dimensional wave tank to validate the theoretical results. It is found that the agreement between theoretical results and experimental data is surprisingly good. We found that the wave absorbing system using a vertical slit plate has sufficient potentials for breakwaters for ocean development.