• Title/Summary/Keyword: Wavelet transform

Search Result 2,023, Processing Time 0.05 seconds

실시간 수문자료의 특성분리를 통한 예측성능의 향상

  • Hwang, Seok-Hwan;Kim, Chi-Yeong;Cha, Jun-Ho;Jeong, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.128-128
    • /
    • 2011
  • 본 연구에서는 자동유량측정시설에 의하여 실시간으로 생산되는 자동유량측정 자료의 정상성 여부를 판단하는데 중요한 적정 측정 신뢰구간을 실시간으로 예측할 수 있는 기술을 개발하였다. 전세계적으로, 현대적인 유량측정이 시작된 이래 연속유량 산정을 위한 방법은 수위-유량관계곡선을 이용하는 방법 외에 실무적으로 활용 가능한 방법은 거의 전무한 실정이다. 수위-유량관계곡선을 이용하는 방법은 연속수위를 계측하여 이에 해당하는 연속유량을 산정하는 방법으로 수위와 유량간에 일정한 관계를 가지는 정상적인 흐름을 보이는 자연하천의 경우에 정확도가 매우 높다. 그러나 감조나 구조물 등에 의해 유량이 조절되는 경우에 유량산정의 정확도는 현저히 떨어지게 된다. 따라서 수위에서 유량을 환산하는 방법이 아닌 유량을 직접 연속으로 측정하는 방법이 꾸준히 연구되어 왔고, 이 중 가장 대표적인 방법이 자동유량측정 방법이다. 그러나 자동유량측정 방법은 유량을 연속으로 측정할 수 있다는 장점에 반해 측정된 유량의 정확도를 높이기가 매우 어렵다는 단점도 가지고 있다. 계측 자체의 기술적 한계는 주로 계측기기적인 문제로 이는 전자기, 통신 기술 등 첨단 기술의 발전과 함께 다양한 현장 시험을 통해 폭넓은 개선이 이루어지고 있다. 그러나 아직 기술적 완성도가 완전하지 못한 현실에서, 현재 설치되어 있는 자동유량측정 유량자료의 신뢰도를 높이기 위해서는 각각의 계측 시점에서 자료가 정상적으로 산정되고 있는지에 대한 검정이 필요하고, 이는 자동유량측정 자료의 정확도 확보에 매우 중요한 관건으로 작용할 수밖에 없다. 이러한 배경에서 본 연구에서는 조석성분과 유출성분을 분리하여 예측하는 방법을 새롭게 개발 적용하였다. 자료는 자료의 시간해상도 증감에 따른 실제 예측의 정확도 증감을 고려하여 가장 적절하다고 판단되는 시자료를 사용하였으며, 자료간 상관을 분석하여 주 입력 자료로 팔당댐 방류량, 한강대교 지점 수위, 전류 수위를 이용하였다. 모형의 예측 능력을 극대화하기 위하여 조석 영향을 받는 자료의 경우는 웨이블릿 변환(wavelet transform)을 이용하여 순수 유출성분과 조위성분을 분리하여 별도로 적용하였다. 그리고 예측을 위한 모형은 실시간 자료기반 모형으로 그 안정성이 인정된 서포트벡터머신(support vector machine)을 이용하였다. 이러한 과정을 통해 한강대교 지점의 순수 유출성분과 조위성분의 유량을 각각 예측한 후 두 결과를 합성하여 최종 한강 대교 지점의 유량을 산정하였다. 조석성분을 분리하여 한강대교 지점의 유량을 예측한 결과 대부분의 예측치가 95% 예측구간에 포함되었다. 그리고 조석성분을 분리하지 않은 모형과 조석성분을 분리한 모형의 예측 능력을 비교한 결과, 조석성분을 분리한 모형이 예측이 정확도가 높았다. RMSE의 경우 분리하지 않은 모형대비 23%의 예측오차가 감소하였고, NSC의 경우 0.92에서 0.95로 예측의 정확도가 증가하였다.

  • PDF

Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration (생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임)

  • Kim, Sungwon;Seo, Youngmin;Zakhrouf, Mousaab;Malik, Anurag
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1037-1051
    • /
    • 2021
  • Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.

Estimation and Mapping of Soil Organic Matter using Visible-Near Infrared Spectroscopy (분광학을 이용한 토양 유기물 추정 및 분포도 작성)

  • Choe, Eun-Young;Hong, Suk-Young;Kim, Yi-Hyun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.968-974
    • /
    • 2010
  • We assessed the feasibility of discrete wavelet transform (DWT) applied for the spectral processing to enhance the estimation performance quality of soil organic matters using visible-near infrared spectra and mapped their distribution via block Kriging model. Continuum-removal and $1^{st}$ derivative transform as well as Haar and Daubechies DWT were used to enhance spectral variation in terms of soil organic matter contents and those spectra were put into the PLSR (Partial Least Squares Regression) model. Estimation results using raw reflectance and transformed spectra showed similar quality with $R^2$ > 0.6 and RPD> 1.5. These values mean the approximation prediction on soil organic matter contents. The poor performance of estimation using DWT spectra might be caused by coarser approximation of DWT which not enough to express spectral variation based on soil organic matter contents. The distribution maps of soil organic matter were drawn via a spatial information model, Kriging. Organic contents of soil samples made Gaussian distribution centered at around 20 g $kg^{-1}$ and the values in the map were distributed with similar patterns. The estimated organic matter contents had similar distribution to the measured values even though some parts of estimated value map showed slightly higher. If the estimation quality is improved more, estimation model and mapping using spectroscopy may be applied in global soil mapping, soil classification, and remote sensing data analysis as a rapid and cost-effective method.