• 제목/요약/키워드: Wearable Healthcare System

검색결과 98건 처리시간 0.024초

무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구 (A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN)

  • 이승철;정완영
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

생체신호 습득과 건강 모니터링을 위한 스마트 헬스케어 의복 개발 (Development of Smart Healthcare Wear System for Acquiring Vital Signs and Monitoring Personal Health)

  • 주문일;고동희;김희철
    • 한국멀티미디어학회논문지
    • /
    • 제19권5호
    • /
    • pp.808-817
    • /
    • 2016
  • Recently, the wearable computing technology with bio-sensors has been rapidly developed and utilized in various areas such as personal health, care-giving for senior citizens who live alone, and sports activities. In particular, the wearable computing equipment to measure vital signs by means of digital yarns and bio sensors is noticeable. The wearable computing devices help users monitor and manage their health in their daily lives through the customized healthcare service. In this paper, we suggest a system for monitoring and analyzing vital signs utilizing smart healthcare clothing with bio-sensors. Vital signs that can be continuously acquired from the clothing is well-known as unstructured data. The amount of data is huge, and they are perceived as the big data. Vital sings are stored by Hadoop Distributed File System(HDFS), and one can build data warehouse for analyzing them in HDFS. We provide health monitoring system based on vital sings that are acquired by biosensors in smart healthcare clothing. We implemented a big data platform which provides health monitoring service to visualize and monitor clinical information and physical activities performed by the users.

유비쿼터스 헬스케어를 위한 무구속 전자청진 하드웨어 시스템 개발 (Development of Wearable Electro-Stethoscope Hardware System for the Ubiquitous Healthcare)

  • 김동준
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1139-1143
    • /
    • 2007
  • For the possible application of monitoring or diagnosing heart sounds in an ubiquitous healthcare environment. a small and light electro-stethoscope that can be attached in human body should be exploited. With this aim, this study proposes a new style of electro-stethoscope device that is composed of four hardware modules in wearable style. For this ambulatory heart sound collecting device, the several tests must be performed to check portability and material capability for collecting heart sounds. It turned out to be that the multi-channel electro-stethoscope can detect heart sound signals well even if it is not pinpointed in the accurate stethoscope point on a heart. Consequently, our ambulatory electro-stethoscope hardware system can be applied to monitor or diagnose abnormal heart sounds in the ubiquitous healthcare system.

사물인터넷 기반 헬스케어 서비스 기술 동향 (Trend of IoT-based Healthcare Service)

  • 허성필;노동희;문창배;김동성
    • 대한임베디드공학회논문지
    • /
    • 제10권4호
    • /
    • pp.221-231
    • /
    • 2015
  • This paper provides the trend of Internet of Things (IoT) for smart healthcare services and applications. IoT has provided a promising opportunity to build intelligent healthcare system and smart wearable applications by using the growing capability of wireless mobile devices, interactive sensors/actuators, and RFID technologies. For analysis of state-of-art technology of smart healthcare system, this paper includes comparative analysis and investigation of existing standard, network protocol, and devices, etc. In this paper, we examine the market trend of IoT healthcare. In particular, we examine the variety of IoT based healthcare type such as mobile, wearable device. After that, we examine the technologies of IoT healthcare such as standard, sensor, network and security. This survey contributes to better understanding of the challenges in existing IoT healthcare and further new light on future research directions.

혈류량 변화를 이용한 장갑형 심박수 모니터링 시스템 (Glove Type Heart Rate Monitoring System Using Blood Flow Change)

  • 한윤철;노윤홍;정도운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.503-504
    • /
    • 2017
  • 최근 세계 각국의 경제적 성장과 함께 건강한 삶에 대한 관심이 증가하고 있으며, 이에 따른 스마트헬스케어 산업이 활성화 되고 있다. 스마트헬스케어 분야에서는 IoT기술의 부각에 따라 웨어러블 형태의 생체정보 계측기술이 부각되고 있다. 본 연구에서는 웨어러블 헬스케어에 응용이 가능하고 활동 중에도 편리하게 심박동의 모니터링을 수행 할 수 있는 장갑형태의 착용형 심박동 모니터링시스템을 구현하고자 하였다. 이를 위해 손가락 말초에서의 혈류량변화를 모니터링하고 디스플레이 할 수 있는 장갑형 웨어러블 헬스케어시스템을 제작하고 그 성능평가를 수행하였다. 실험결과 실제 일상생활 중 움직임을 수반하더라도 심박동의 모니터링이 가능함을 확인할 수 있었다.

  • PDF

인체 착용형 다중 생체신호 실시간 모니터링 시스템 (Wearable System for Real-time Monitoring of Multiple Vital Signs)

  • 이영동;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.249-252
    • /
    • 2008
  • 유비쿼터스 헬스케어에서의 착용형(Wearable) 생체신호 모니터링 시스템은 가슴 부착형, 손목시계형, 신발, 의복형 등과 같은 형태로 많은 연구들이 진행 중에 있으며, 본 논문에서는 가슴 부착형태의 인체 착용형 다중 생체신호 시스템을 설계하고, 다중 생체신호 모니터링 시스템을 위해 심전도와 3축 가속도 센서를 사용하여 심전도 신호 측정 및 신체 움직임에 따라 변화하는 값을 측정할 수 있도록 구현하였다. 구현한 시스템은 생체센서노드, 센서보드, 생체신호 수집을 위한 베이스스테이션 노드로 구성된다. 생체센서노드는 가슴 부착형으로 신체에 착용하여 사용자의 심전도와 가속도 신호를 계측하도록 설계하였으며, 서버 PC에 연결된 베이스스테이션 노드로 계측된 생체신호를 전송한다. 센서보드는 심전도와 가속도 신호를 측정하기 위한 센서로 구성되며, 생체센서노드와 일체형으로 장착이 가능하도록 설계하였다. 또한, 생체신호 수집을 위한 베이스스테이션 노드는 IEEE 802.15.4 무선통신을 통해 생체센서노드로부터 전송된 생체신호를 수집하여 그 수집된 생체신호를 실시간으로 서버 PC에 디스플레이가 가능하다. 본 논문에서 구현한 시스템을 통해 P, QRS, T파로 구성된 심전도 신호를 계측할 수 있었으며, 계측된 신호에서 심전도 신호의 파형 성분들이 나타남을 확인 할 수 있었다. 또한, 3축 가속도 센서에 의해 신체의 움직임에 따라 변화하는 x, y, z의 3축 가속도 출력 값을 얻을 수 있다.

  • PDF

A Mobile Stress Management System utilizing Variable Voice Information According to the Wearing Area

  • Kang, Byeongsoo;Vannroath, Ky;Kang, Hyun-syug
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.95-100
    • /
    • 2017
  • Recently, as stress has become a major threat to people's health, there is a growing interest in wearable stress management services for stress relief. In this paper, we developed a wearable device(Care-on) capable of extracting changeable human voice information at each site and a Healthcare App(S-Manager) that enables stress management in real time using the wearable device. It collects and analyzes variable real-time voice information for each part of the person's body. And It also provides the ability to monitor stress conditions in a mobile environment and provide feedback on the analysis results in step by step in the mobile environment. We tested the developed wearable devices and app in a mobile environment and analyzed the results to confirm their usefulness.

Mobile Healthcare System Based on Bluetooth Medical Device

  • Kim, Jeong-Heon;Lee, Seung-Chul;Lee, Boon-Giin;Chung, Wan-Young
    • 센서학회지
    • /
    • 제21권4호
    • /
    • pp.241-248
    • /
    • 2012
  • Recently healthcare industry such as pharmaceutical, medical device and healthcare service technology is growing significantly. Mobile healthcare has attracted big attention due to IT convergence technology. Paradigm of healthcare has been changed from the 1st generation(communicable disease prevention) and the 2nd generation(treatment of disease due to extended life expectancy) to the 3rd generation(extended life expectancy due to prevention and control). In our study, we suggest the 3rd generation mobile healthcare system using Bluetooth based wearable ECG monitoring system and smart phone technology. The mobile healthcare system consists of wearable shirts with Bluetooth communication module, ECG sensor, battery, and mobile phone. The ECG data is obtained by a miniaturized sensor and the data is transferred to a mobile phone using Bluetooth communication. Then, user can monitor his/her own ECG signal on an application using Android in mobile phone. The Bluetooth communication device is used due to highly reliable data transmission property and the Bluetooth chip is embedded in every mobile phone. The wearable shirts with chest belt of Bluetooth ECG module is designed with a focus on convenience in the daily life of a wearer. The ECG signal evaluation software in Android based mobile phone is developed for the health check and the ECG signal variation is tested according to the activities of the wearer such as walking, climbing stairs, stand up and sit down, and so on.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • 제16권4호
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

A Machine Learning Approach to Detect the Dog's Behavior using Wearable Sensors

  • Aich, Satyabrata;Chakraborty, Sabyasachi;Joo, Moon-il;Sim, Jong Seong;Kim, Hee-Cheol
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.281-282
    • /
    • 2019
  • In recent years welfare of animals is the biggest challenge because animals, especially dogs are widely recognized as pet as well as they are using as service animals. So, for the wellbeing of the dog it is necessary to perform objective assessment to track their behavior in everyday life. In this paper, we have proposed an automatic behavior assessment system for dogs based on a neck worn and tail worn accelerometer and gyroscope platform, and data analysis techniques that recognize typical dog activities. We evaluate the system based on the analysis of 8 behavior traits in 3 dogs, incorporating 2 breeds of various sizes. Our proposed framework able to reproduce the manual assessment that is based on the video recording which is treated as gold standard that exhibits the real-life use case of automated dog behavior analysis.

  • PDF