• Title/Summary/Keyword: Weather Observation

Search Result 598, Processing Time 0.025 seconds

Improvement of Automatic Present Weather Observation with In Situ Visibility and Humidity Measurements (시정과 습도 관측자료를 이용한 자동 현천 관측 정확도 향상 연구)

  • Lee, Yoon-Sang;Choi, Reno Kyu-Young;Kim, Ki-Hoon;Park, Sung-Hwa;Nam, Ho-Jin;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.439-450
    • /
    • 2019
  • Present weather plays an important role not only for atmospheric sciences but also for public welfare and road safety. While the widely used state-of-the-art visibility and present weather sensor yields present weather, a single type of measurement is far from perfect to replace long history of human-eye based observation. Truly automatic present weather observation enables us to increase spatial resolution by an order of magnitude with existing facilities in Korea. 8 years of human-eyed present weather records in 19 sites over Korea are compared with visibility sensors and auxiliary measurements, such as humidity of AWS. As clear condition agrees with high probability, next best categories follow fog, rain, snow, mist, haze and drizzle in comparison with human-eyed observation. Fog, mist and haze are often confused due to nature of machine sensing visibility. Such ambiguous weather conditions are improved with empirically induced criteria in combination with visibility and humidity. Differences between instrument manufacturers are also found indicating nonstandard present weather decision. Analysis shows manufacturer dependent present weather differences are induced by manufacturer's own algorithms, not by visibility measurement. Accuracies of present weather for haze, mist, and fog are all improved by 61.5%, 44.9%, and 26.9% respectively. The result shows that automatic present weather sensing is feasible for operational purpose with minimal human interactions if appropriate algorithm is applied. Further study is ongoing for impact of different sensing types between manufacturers for both visibility and present weather data.

Development Plan of Package-type Instruments for Next-Generation Space Weather Observation Network

  • Choi, Seonghwan;Kwak, Young-Sil;Lee, Wookyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2021
  • Starting with the observation of sunspots in 1987, Korea Astronomy and Space Science Institute (KASI) has developed and installed various ground-based instruments for space weather research in Korea. Recently, SNIPE and CODEX are also being developed as space-based instruments. Expansion of the observation area and simultaneous observation have become important in the study of space weather. We have started Next-Generation Space Weather Observation Network Project this year. In order to establish a solar observation network, we planned to develop the Next Solar Telescope (NxST) which is a solar imaging spectrograph, and to install three NxST in the northern hemisphere. And we also planned to develop the Thermosphere-Ionosphere-Mesosphere Observation System (TIMOS), Global Navigation Satellite System (GNSS), and Geomagnetic packages, and install them in about ten sites over the world, for the purpose of establishing a global observation network for the near-earth space weather. We can take simultaneously observed space weather data in the global area, and are expecting it will play an important role in the international community for space weather research. We also have a strategy to secure observational technologies necessary for big space missions in the future, through this project.

  • PDF

Effects of Observation Network Density Change on Spatial Distribution of Meteorological Variables: Three-Dimensional Meteorological Observation Project in the Yeongdong Region in 2019 (관측망 밀도 변화가 기상변수의 공간분포에 미치는 영향: 2019 강원영동 입체적 공동관측 캠페인)

  • Kim, Hae-Min;Jeong, Jong-Hyeok;Kim, Hyunuk;Park, Chang-Geun;Kim, Baek-Jo;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • We conducted a study on the impact of observation station density; this was done in order to enable the accurate estimation of spatial meteorological variables. The purpose of this study is to help operate an efficient observation network by examining distributions of temperature, relative humidity, and wind speed in a test area of a three-dimensional meteorological observation project in the Yeongdong region in 2019. For our analysis, we grouped the observation stations as follows: 41 stations (for Step 4), 34 stations (for Step 3), 17 stations (for Step 2), and 10 stations (for Step 1). Grid values were interpolated using the kriging method. We compared the spatial accuracy of the estimated meteorological grid by using station density. The effect of increased observation network density varied and was dependent on meteorological variables and weather conditions. The temperature is sufficient for the current weather observation network (featuring an average distance about 9.30 km between stations), and the relative humidity is sufficient when the average distance between stations is about 5.04 km. However, it is recommended that all observation networks, with an average distance of approximately 4.59 km between stations, be utilized for monitoring wind speed. In addition, this also enables the operation of an effective observation network through the classification of outliers.

Weather Observation System Building in the Intertidal Zone (조간대 기상관측시스템 구축)

  • Jo, Won Gi;Kang, Dong-hwan;Lee, DongHyun
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.357-363
    • /
    • 2022
  • In this study, we installed a weather observation tower tailored to the intertidal zone and established an intertidal weather observation system capable of real-time monitoring through a wireless network. This provided weather observation data representing the meteorological characteristics of the intertidal zone. To optimize this system in the future, we present practical directions for the development of observation equipment and for the data management and sharing, and we contribute to establishing the infrastructure.

Analysis of Interferences into a Space Weather Observation Receiver in 2.8GHz Band (2.8GHz 대역 우주기상 관측 수신기에 미치는 간섭 분석)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.350-357
    • /
    • 2022
  • With the recent prediction of 'Cycle 25', the importance of space weather research increases. Accordingly, the World Radiocommunication Conference (WRC)-23 has adopted Agenda Item 9.1a) and carried out sharing researches between active/passive space weather observation systems and existing services. Therefore, in this paper, in order to increase the precision of space weather environment data and secure the frequency spectrum for observation systems, the direct interference effect from the weather radar in Gosan, Jeju on the space weather observation receiver in Hallim, Jeju, and the indirect interference on the observation receiver by diffraction and scattering from the radar target have been analyzed. As a result, it can be known that the radar direction, the propagation direction diffracted and scattered from the target, and the Rradar Cross Section (RCS) of the radar target, the reception area of the space weather observation antenna, and the antenna off-boresight are important parameters for the interference effect analysis.

Classification of Weather Patterns in the East Asia Region using the K-means Clustering Analysis (K-평균 군집분석을 이용한 동아시아 지역 날씨유형 분류)

  • Cho, Young-Jun;Lee, Hyeon-Cheol;Lim, Byunghwan;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.451-461
    • /
    • 2019
  • Medium-range forecast is highly dependent on ensemble forecast data. However, operational weather forecasters have not enough time to digest all of detailed features revealed in ensemble forecast data. To utilize the ensemble data effectively in medium-range forecasting, representative weather patterns in East Asia in this study are defined. The k-means clustering analysis is applied for the objectivity of weather patterns. Input data used daily Mean Sea Level Pressure (MSLP) anomaly of the ECMWF ReAnalysis-Interim (ERA-Interim) during 1981~2010 (30 years) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Using the Explained Variance (EV), the optimal study area is defined by 20~60°N, 100~150°E. The number of clusters defined by Explained Cluster Variance (ECV) is thirty (k = 30). 30 representative weather patterns with their frequencies are summarized. Weather pattern #1 occurred all seasons, but it was about 56% in summer (June~September). The relatively rare occurrence of weather pattern (#30) occurred mainly in winter. Additionally, we investigate the relationship between weather patterns and extreme weather events such as heat wave, cold wave, and heavy rainfall as well as snowfall. The weather patterns associated with heavy rainfall exceeding 110 mm day-1 were #1, #4, and #9 with days (%) of more than 10%. Heavy snowfall events exceeding 24 cm day-1 mainly occurred in weather pattern #28 (4%) and #29 (6%). High and low temperature events (> 34℃ and < -14℃) were associated with weather pattern #1~4 (14~18%) and #28~29 (27~29%), respectively. These results suggest that the classification of various weather patterns will be used as a reference for grouping all ensemble forecast data, which will be useful for the scenario-based medium-range ensemble forecast in the future.

Variations in Air Temperature and Water Temperature with Tide at the Intertidal Zone : Odo Island, Yeosu (조간대에서 조위에 따른 기온과 수온 변화 : 여수 오도섬)

  • Won Gi Jo;Dong-hwan Kang;Byung-Woo Kim
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1027-1038
    • /
    • 2022
  • The intertidal zone has both land and marine characteristics and shows complex weather environments. These characteristics are suited for studying climate change, energy balance and ecosystems, and may play an important role in coastal and marine weather prediction and analysis. This study was conducted at Odo Island, approximately 300m from the mainland in Yeosu. We built a weather observation system capable of real-time monitoring on the mud flat in the intertidal zone and measured actual weather and marine data. Weather observation was conducted from April to June 2022. The results showed changes in air temperature and water temperature with changes in the tide level during spring. Correlation analysis revealed characteristic changes in air temperature and water temperature during the day and night, and with inundation and exposure.

Analysis of Radiation Energy Budget Using WISE Observation Data on the Seoul Metropolitan Area (WISE 관측자료를 이용한 수도권지역의 복사에너지수지 분석)

  • Jee, Joon-Bum;Lee, Hankyung;Min, Jae-Sik;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.103-114
    • /
    • 2017
  • Radiation energy budget was analyzed using observation data from the Weather Information Service Engine (WISE) energy flux tower on the Seoul metropolitan area. Among observation data from the 13 energy flux towers, we used meteorological variables, radiation data (upward and downward short wave, upward and downward long wave, net short wave, net long wave and net radiation), albedo and emissivity for 15 months from July 2016 to September 2017. Although Gajwa (205) and Ttuksumm (216) sites located in urban, the albedo was relatively high due to the surround environment by glass wall buildings and the Han river around the sites. And Bucheon (209) site located in the suburb represented generally low emissivity. As a result, the albedo decreased and the emissivity increased in the city center. In the Seoul metropolitan area, the net radiation energy is $73.9W/m^2$ that the radiation budget of the surface is absorbed into the atmosphere. According to WISE observation data, it can be seen that observation at each sites are influenced by the surrounding environment.

Characteristics of Road Weather Elements and Surface Information Change under the Influence of Synoptic High-Pressure Patterns in Winter (겨울철 고기압 영향에서 도로 위 기상요소와 노면정보 변화 특성에 관한 연구)

  • Kim, Baek-Jo;Nam, Hyounggu;Kim, Seon-Jeong;Kim, Geon-Tae;Kim, Jiwan;Lee, Yong Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.329-339
    • /
    • 2022
  • Better understanding the mechanism of black ice occurrence on the road in winter is necessary to reduce the socio-economic damage it causes. In this study, intensive observations of road weather elements and surface information under the influence of synoptic high-pressure patterns (22nd December, 2020 and 29th January, and 25th February, 2021) were carried out using a mobile observation vehicle. We found that temperature and road surface temperature change is significantly influenced by observation time, altitude and structure of the road, surrounding terrain, and traffic volume, especially in tunnels and bridges. In addition, even if the spatial distribution of temperature and road surface temperature for the entire observation route is similar, there is a difference between air and road surface temperatures due to the influence of current weather conditions. The observed road temperature, air temperature and air pressure in Nongong Bridge were significantly different to other fixed road weather observation points.

Development of Mini-Weather Buoy (연근해용 소형기상관측부이의 개발)

  • Lee, Dong-Kyu;Oh, Jai-Ho;Suh, Young-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.155-159
    • /
    • 1999
  • The mini-weather buoy using newly developed Weather Observation Through Ambient Noise (WOTAN) technology is developed. The buoy uses the cellular phone system for communication between the mini-weather buoy and the receiving station. The developed mini-weather buoy was deployed near Kijang and the comparison with land observation station was good: the rms error for wind speed estimation from underwater ambient noise was about 1 m/s. The only shortcoming of developed mini-weather buoy is that the buoy must be within the range of the cellular phone system, but it can be easily solved when satellite phone system is available.

  • PDF