• Title/Summary/Keyword: Weighting Curve

Search Result 58, Processing Time 0.027 seconds

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF

Comparison of Rating Methods for the Floor Impact Noise (바닥충격음 평가방법 중 단일수치평가량과 dB(A) 비교)

  • Park, Cheol-Yong;Jang, Dong-Woon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.612-615
    • /
    • 2006
  • In this study, we compared and analyzed the floor impact noise insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels(dB(A)). The results of this study are(1)dB(A) by the specified frequency is 0.5dB(A) at light weight and 2.5dB(A) at heavy weight upper than all pass dB(A)(2)the rating using reversed A-weighting curve is 5dB lower than dB(A)(3)the number of rating using reversed A-weighting curve mainly depends on impact noise pressure level of 63Hz in heavy weight but dB(A) does not.

  • PDF

A Laboratory Study on Low Frequency Noise Assessment based on Noise Acceptability Limit (소음 수응 한계를 고려한 저주파 소음평가에 대한 실험적 연구)

  • Hong, Seung-Ki;Kim, Jae-Hwan;Kim, Kyu-Tae;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.736-740
    • /
    • 2007
  • A laboratory study on low frequency noise assessment has been carried out to evaluate the relevance of the weighting curve. Especially, the A-weighting curve which is used in most noise assessments has been evaluated using the acceptability limit in this study. The acceptability limit is one of the indicators in which the subjective responses were well-reflected. For the measurement of the acceptability limit, pure tone stimuli were used in the frequency range between 20 and 200 Hz. The measurement was proceeded in the anechoic chamber to minimize the background noise level. A total of 29 test subjects, who were aged between 19 to 33 years, participated in this study. They had been exposed to various stimuli for about 1 hour by supra-aural earphone. The measurement consisted of two listening sessions: hearing threshold and the acceptability limit session. The results showed that the tendency of the acceptability limit curve was approximately equal to C-weighting curve which had been found to be superior to A-weighting curve in assessment of low frequencies.

A Laboratory Study on Low Frequency Noise Assessment based on Noise Acceptability Limits (소음 수응 한계(Noise Acceptability Limits)를 고려한 저주파 소음평가에 대한 실험적 연구)

  • Hong, Seung-Ki;Kim, Jae-Hwan;Kim, Kyu-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.127-131
    • /
    • 2007
  • A laboratory study on low frequency noise assessment was carried out to determine the acceptability limits in the frequency range between 20 and 200 Hz. The acceptability limits were tested in the anechoic chamber to minimize the background noise. A total of 30 test subjects, who were aged between 19 to 33 years, participated in this study. They were exposed to various stimuli for about 1 hour by supra-aural earphone. The experiment consisted of two listening sessions; hearing threshold and the acceptability limits session. The results showed that the trend of the acceptability limits curve was approximately equal to C-weighting curve which had been found to be superior to A-weighting curve in low frequency noise assessment.

  • PDF

Determination of Frequency Weighting Curves for the Evaluation of Steering Wheel Vibration (체감 진동량 평가를 위한 조향 휠 진동의 주파수 가중치 결정)

  • 홍석인;장한기;김승한
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.165-172
    • /
    • 2003
  • This study aims to find frequency weighting curves for the evaluation of drivers' discomfort by vertical and rotational steering wheel vibration. Equal sensation curves, inverse of frequency weighting curves, were determined for the two kinds of vibrations respectively by using the sinusoidal signals with reference amplitudes from 0.2 to 0.4 m/s2 in the frequency range from 5 to 100 ㎐. Twelve subjects joined at the tests, and median values of the twelve judgments were used to determine the equal sensation curves. An experiment was followed to compare the relative sensation magnitude between the two kinds of equal sensation curves, which showed discomfort by the rotational vibration was 1.5 times of that by the vertical vibration at 50 ㎐.

$H{\infty}$ optimal controller robustness and performance improvement by frequency domain analysis of open loop transfer function (개루프 전달함수 주파수영역 해석에 의한 $H{\infty}$ 최적 제어기의 견실성 및 성능 개선)

  • Kim, Y.K.;Ryu, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.761-763
    • /
    • 1999
  • When the controller designed by the $H{\infty}$ control technique is applied to the object system, sometimes the controller does not satisfy the robust stability and robust performance but only satisfy the nominal performance. In this paper, we derive the region on the frequency response curve of the open-loop transfer function which satisfy the robustness and robust performance of the designed controller. We also derive the region for the suitableness of the weighting function on the frequency response curve of the weighting function. We showed that the robust stability and the robust performance of the $H{\infty}$ optimal control)or by applying the designed controller on an electromechanical actuator system could be improved by determining parameter ${\gamma}$ and weighting function gain ${\alpha}$ using the derived region.

  • PDF

A Novel System for Detecting Adult Images on the Internet

  • Park, Jae-Yong;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.910-924
    • /
    • 2010
  • As Internet usage has increased, the risk of adolescents being exposed to adult content and harmful information on the Internet has also risen. To help prevent adolescents accessing this content, a novel detection method for adult images is proposed. The proposed method involves three steps. First, the Image Of Interest (IOI) is extracted from the image background. Second, the IOI is distinguished from the segmented image using a novel weighting mask, and it is determined to be acceptable or unacceptable. Finally, the features (color and texture) of the IOI or original image are compared to a critical value; if they exceed that value then the image is deemed to be an adult image. A Receiver Operating Characteristic (ROC) curve analysis was performed to define this optimal critical value. And, the textural features are identified using a gray level co-occurrence matrix. The proposed method increased the precision level of detection by applying a novel weighting mask and a receiver operating characteristic curve. To demonstrate the effectiveness of the proposed method, 2850 adult and non-adult images were used for experimentation.

Correlation of Single-Number Ratings for Sound Insulation by Floor Impact (바닥충격음 차단성능 단일수치 평가방법별 상관성에 대한 조사연구)

  • 김흥식;김명준;김하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.719-723
    • /
    • 2002
  • The purpose of this study is to suggest the correlation of single-number ratings for sound insulation by floor impact. As a assessment method of impact sound insulation. we selected the IIC contour of ISO, A weighted sound level. Inverse A-weighting curve and L-Index of japanese industrial standard. And we estimated the single-number ratings by application the measured data of impact sound level to each method. The results showed that the coefficients of determination between each two single-number ratings were very high (more than 0.9169). And In the condition of same assessment method, the coefficient of determination for light-weight impact sound was higher than that for heavy-weight impact sound.

  • PDF

A Study on the Evaluation of Sensation Magnitude of Vertical Vibration of a Steering Wheel (조향 휠 수직 진동의 체감량 평가에 관한 연구)

  • Jang, Han-Kee;Hong, Seok-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.108-113
    • /
    • 2007
  • This study aims to find equivalent comfort contours, reciprocal of frequency weighting curves, for vertical steering wheel vibration. Psychophysical responses were measured from twelve male subjects by using magnitude estimation of relative discomfort due to vertical steering wheel vibrations of magnitude of 0.1 to 1.58 $m/s^2$ in the frequency range of 4 to 250 Hz. Relative discomfort were estimated with a reference vibration of 0.4 $m/s^2$ at 31.5 Hz. Equivalent comfort contours were produced from the median of sensation magnitudes judged by twelve subjects, which showed variation in the shapes with increase of vibration magnitude. A shape of the contour came close to the perception threshold curve with decrease of vibration magnitude. When the vibration magnitude increases, the shape changed close to those in the references of Hong and et al (2003). It is also recommended frequency weighting curves for vertical steering wheel vibration must be expressed as a function of vibration magnitude as well as frequency.