• Title/Summary/Keyword: Weissella koreensis

Search Result 21, Processing Time 0.032 seconds

Isolation, Identification, and Characterization of Weissella Strains with High Ornithine Producing Capacity from Kimchi (김치로부터 오르니틴 생성능을 갖는 Weissella 속 균주의 분리, 동정 및 특성)

  • Yu, Jin-Ju;Park, Hyoung-Ju;Kim, Su-Gon;Oh, Suk-Heung
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.339-345
    • /
    • 2009
  • Two lactic acid bacteria (LAB) with high ornithine-producing capacity were isolated from kimchi. Examination of the biochemical features using an API kit indicated that the strains belonged to the members of Weissella genus. They were gram positive, short rod-type bacteria, and able to grow anaerobically with $CO_2$ production. The isolates grew well on MRS broth at $25\sim37^{\circ}C$ and pH of 6.0~7.0. The optimum temperature and pH for growth are $30^{\circ}C$ and pH 6.5. The isolates fermented arabinose, ribose, xylose, glucose but not cellobiose, galactose, raffinose, or trehalsoe. The 16S rDNA sequences of isolates showed 99.6% and 99.7% homology with the Weissella koreensis S5623 16S rDNA (access no. AY035891). They were accordingly identified and named as Weissella koreensis OK1-4 and Weissella koreensis OK1-6, and could produce ornithine from MRS broth supplemented with 1% of arginine at a productivity of 27.01 and 31.41 mg/L/h, respectively. This is the first report on the production of ornithine by the genus Weissella isolated from kimchi.

Draft Genome Sequence of Weissella koreensis Strain HJ, a Probiotic Bacterium Isolated from Kimchi

  • Seung-Min Yang;Eiseul Kim;So-Yun Lee;Soyeong Mun;Hae Choon Chang;Hae-Yeong Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.128-131
    • /
    • 2023
  • Here we report the draft genome sequence of Weissella koreensis strain HJ and genomic analysis of its key features. The genome consists of 1,427,571 bp with a GC content of 35.5%, and comprises 1,376 coding genes. In silico analysis revealed the absence of pathogenic factors within the genome. The genome harbors several genes that play an important role in the survival of the gastrointestinal tract. In addition, a type III polyketide synthase cluster was identified. Pangenome analysis identified 68 unique genes in W. koreensis strain HJ. The genome information of this strain provides the basis for understanding its probiotic properties.

Development and Application of PCR-Based Weissella Species Detection Method with recN Gene Targeted Species-Specific Primers (RecN 유전자 특이적 PCR을 이용한 Weissella 속 유산균의 검출법 개발 및 적용)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Han, Eung-Soo;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 2011
  • PCR-based Weissella species-specific detection method was developed to apply for the discrimination of Korean and Chinese kimchi by detecting a Weissella species only found in Korean or Chinese kimchi. PCR primers were designed from the species-specific sequence in the recN gene of each species. The primers allowed the species-specific detection and identification of nine species in the genera Weissella, and were successfully applied to the detection of W. cibaria, W. confusa, W. koreensis, and W. soli in kimchi with 20 ng template DNA. W. cibaria, W. confusa, and W. koreensis were detected from the Korean kimchi samples tested but W. soli was not detected. However, the four species were detected from Chinese kimchi samples. PCR-based W. soli-specific detection could not be perfectly applied as the Chinese kimchi discriminating method but has significance as an approach to evaluate the potential of scientific verification method based on the difference of microbial community.

Fermentation of rice flour with Weissella koreensis HO20 and Weissella kimchii HO22 isolated from kimchi and its use in the making of jeolpyeon (김치유산균(Weissella koreensis HO20, Weissella kimchii HO22)으로 발효한 쌀가루의 이화학적 특성 및 이를 이용한 절편의 제조)

  • Choi, Hyejung;Lee, Hwawon;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.29 no.3
    • /
    • pp.267-274
    • /
    • 2013
  • Demand for a rice cake, a popular traditional food in Korea, is rising, but its industrial-scale production is extremely difficult due to its short shelf-life caused by starch retrogradation and microbial spoilage. By means of the sourdough fermentation technique, we attempt to develop rice cakes with a longer shelf-life. Heterofermentative lactic acid bacteria (Weissella koreensis HO20, Weissella kimchii HO22) isolated from kimchi were used to ferment wet-milled rice flour for their abilities to produce exopolysaccharides and to inhibit the microbial spoilage of rice cakes. After 24 hr of fermentation at $25^{\circ}C$, viable cell counts in rice dough increased from $10^6$ CFU/g to $10^8$ CFU/g and total titratable acidity increased from 0.05% to 0.20%, whereas pH decreased from 6.5 to 5.1. Fermented rice flour showed significantly lower peak, trough, and final viscosities as well as breakdown and setback viscosities measured by rapid viscoanalyzer. Both lactic acid bacteria showed in vitro antifungal activity against Penicillium crustosum isolated from rice cakes. The antifungal activity remained constant after the treatments with heat, proteinase K and trypsin, but fell significantly by increase of pH. Rice cakes made of fermented rice flour were found to retard mycelial growth of P. crustosum. The degree of retrogradation as measured by the hardness of the rice cake was significantly reduced by the use of fermented rice flour. The results suggest that use of fermented rice flour has a beneficial role in retarding starch retrogradation and in preventing fungal growth, hence extending the shelf-life of rice cakes.

Antibacterial activity of supernatant obtained from Weissella koreensis and Lactobacillus sakei on the growth of pathogenic bacteria

  • Im, Hana;Moon, Joon-Kwan;Kim, Woan-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.415-423
    • /
    • 2016
  • This study was carried out to obtain basic data for the industrial use of Weissella koreensis and Lactobacillus sakei. The antibacterial activity of supernatants obtained from W. koreensis and L. sakei were tested against pathogenic bacteria such as Escherichia coli KCCM 11234, Salmonella enteritidis KCCM 3313, Salmonella enteritidis KCCM 12021, Salmonella typhimurium KCCM 40253, and Salmonella typhimurium KCCM 15. The supernatant of L. sakei showed antibacterial activity against E. coli KCCM 11234, S. enteritidis KCCM 12021, and S. typhimurium KCCM 15, while the supernatant of W. koreensis showed antibacterial activity against E. coli KCCM 11234 and S. enteritidis KCCM 12021. The effect of pH changes and heat treatment on antibacterial activity of the supernatants was examined using the sensitive pathogenic bacteria (E. coli KCCM 11234, S. enteritidis KCCM 12021 and S. typhimurium KCCM 15). Antibacterial activity against sensitive pathogenic bacteria was maintained under heat treatment at all temperatures, but there was no antibacterial activity associated with pH modification. Furthermore, it was confirmed that the antibacterial activity of the supernatants obtained from W. koreensis and L. sakei was a result of organic acids including, lactic, acetic, phosphoric, succinic, pyroglutamic, citric, malic, and formic acids. Therefore, the present study showed that the organic acids produced by L. sakei and W. koreensis exhibited a strong antibacterial activity against pathogenic bacteria. Moreover, in the food industry, these organic acids have the potential to inhibit the growth of pathogenic bacteria and improve the quality of stored food.

Application of 16S rDNA PCR-RFLP Analysis for the Rapid Identification of Weissella Species (Weissella 속 유산균의 빠른 동정을 위한 16S rDNA PCR-RFLP 분석법의 적용)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.455-460
    • /
    • 2010
  • A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis was applied to detect and identify ten Weissella spp. frequently found in kimchi. The previously reported genus-specific primers designed from 16S rDNA sequences of Weissella spp. were adopted but PCR was performed at the increased annealing temperature by $4^{\circ}C$. The sizes of amplified PCR products and restricted fragments produced by AluI, MseI, and BceAI endonucleases were well correspond with the expected sizes. W. kandleri, W. koreensis, W. confusa, W. minor, W. viridescens, W. cibaria, and W. soli were distinguished by AluI and MseI and W. hellenica and W. paramesenteroides were identified by BceAI. W. thailandensis was distinguished when restriction pattern of other species was compared but identified by the single use of MspI.

Isolation and Identification of Weissella kimchii from Green Onion by Cell Protein Pattern Analysis

  • Kim, Tae-Woon;Lee, Ji-Yeon;Song, Hee-Sung;Park, Jong-Hyun;Ji, Geun-Eog;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.105-109
    • /
    • 2004
  • This study was conducted to investigate the potential origin of Weissella species, which were found in ingredients of kimchi, such as salted Chinese cabbage, radish, green onion, red pepper powder, pickled shrimps, garlic, and ginger. Ten strains of Weissella species (Weissella thailandensis, W. kimchii, W. koreensis, W. minor, W. halotolerans, W. hellenica, W. kandleri, W. confusa, W. viridescens, and W. paramesenteroides) and lactic acid bacteria isolated from ingredients of kimchi were analyzed by SDS-PAGE of whole-cell proteins. Several strains with patterns identical to those of Weissella kimchii were isolated from green onion. On the basis of biochemical characteristics and 16S rDNA sequence comparisons, these strains were identified as Weissella kimchii, suggesting green onion as a major origin of Weissella kimchii found in kimchi.

Evaluation of Lactic Acid Bacterial Community in Kimchi Using Terminal-Restriction Fragment Length Polymorphism Analysis (Terminal-Restriction Fragment Length Polymorphism 분석을 이용한 김치발효 관련 유산균 군집의 평가)

  • Shim, Sang-Min;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.247-259
    • /
    • 2008
  • Terminal-restriction fragment length polymorphism (T-RFLP) analysis, one of rapid culture-independent microbial community analysis methods, was used to determine the lactic acid bacterial complexity and dynamics during kimchi fermentation at $15^{\circ}C$ and $4^{\circ}C$. At both temperatures, the common presence of Leuconostoc mesenteroides, Lc. inhae, Lc. kimchi, Weissella koreensis, W. cibaria, Lactobacillus sakei, Lb. curvatus, Lb. plantarum, Lb. paraplantarum, Lb. pentosus, and Lb. brevis was predicted. Lc. citreum and Enterococcus faecalis were detected at $15^{\circ}C$ and $4^{\circ}C$, respectively. W. koreensis predominated during the mid stage of kimchi fermentation whereas lactobacilli were dominants during later stage. Lb. sakei and Lb. curvatus became dominants regardless of fermentation temperature but the growth of Lb. plantarum, Lb. paraplantarum, Lb. pentosus, and Lb. brevis was restricted at psychrophilic temperature. Some species of leuconostocs were maintained until the later stage of kimchi fermentation.

Detection of Pediococci in Kimchi Using Pediococci Selective Medium (Pediococci 선택배지를 이용한 김치 유래 Pediococci 검출)

  • Lee, Myeong-Jae;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.238-242
    • /
    • 2009
  • Pediococci selective medium (PSM) supplemented with ampicillin (A) reported as valid for the detection and enumeration of pediococci included in foods and animal feed was evaluated for the selective detection of the genus Pediococcus in kimchi. PSM is based on the complex basal medium MRS supplemented with cysteine hydrochloride, vancomycin, novobiocin, and nystatin. In the medium evaluation with known species, the growth inhibition of leuconostocs, Pediococcus pentosaceus, Lactobacillus casei, Lactobacillus curvatus, Oenococcus oeni, and Streptococcus thermophilus was not confirmed. In the application of kimchi samples on the selective medium, leuconostocs, P. pentosaceus, Weissella koreensis, Lb. curvatus, Lactobacillus brevis, and Lactobacillus sakei were detected. PSM+A was proved to be not applicable for the detection of pediococci in kimchi.

Change of Microbial Communities in Kimchi Fermentation at Low Temperature (김치의 저온 발효 중 미생물 변화 양상)

  • 박정아;허건영;이정숙;오윤정;김보연;민태익;김치경;안종석
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • The diversity and change of microbial communities during kimchi fermentation at $4^{\circ}C$ were analyzed by denaturing gradient gel electrophoresis (DGGE). Kimchi samples were taken every 5 days over the fermentation periods (for 60 days) to extract total DNA for DGGE analysis. Touchdown polymerase chain reaction was performed to amplify the V3 region of 16S rRNA gene. Sequencing results of partial 16S rDNA amplicons from DGGE profiles revealed that lactic acid bacteria (LAB), especially Weissella koreensis, Lactobacillus sakei and Leuconostoc gelidum were dominants in kimchi fermentation at $4^{\circ}C$. And we knew that W. koreensis steadily existed throughout the whole fermentation period, also Lb. sakei and Leuc. gelidum appeared from 10th day and 30th day of fermentation time, respectively and then these species were to be dominant microorganisms.