• Title/Summary/Keyword: Welding Residual Stress

Search Result 593, Processing Time 0.031 seconds

The application of forman equation for fatigue crack propagation in welding residual stress region (溶接殘留應力領域에서의 疲勞균열傳播에 대한 Forman式의 適用)

  • 김상철;이용복
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.42-56
    • /
    • 1987
  • Fatigue Fracture behaviors of the TIG-welded aluminum alloys, such as Al 2024-T4, A1 5050-0 and Al 7075-T7 were investigated when a crack propagated from tensile residual stress region and compressive residual stress region. The experimental values were compared with the values expected by the Forman equation. The experimental results are summarized as the following: (1) In case of fatigue crack propagation from residual stress region, the values predicted by Forman equation were Found to exactly corresponded to the experimental values. (2) When the stress intensityfactors affected by compressive residual stress, Kres, were greater than the stress intensity factors by minimum applied stresses. Kmin, the Forman equation was found to be improper to be applied directly, but the equation appeared to be proper, if the stress ratio was modified to zero. (3) The experimental results confirmed that residual stress was relaxed by repeated tensile loading and the relaxing trend was greater in case of compressive residual stress than that of tensile residual stress.

  • PDF

Effect of welding residual stress on operating stress of nuclear turbine low pressure rotor

  • Tan, Long;Zhao, Liangyin;Zhao, Pengcheng;Wang, Lulu;Pan, Jiajing;Zhao, Xiuxiu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1862-1870
    • /
    • 2020
  • The purpose of this study is to investigate the effect of welding residual stress on operating stress in designing a nuclear turbine welded rotor. A two-dimensional axisymmetric finite element model is employed to calculate the residual stress before and after post weld heat treatment (PWHT), and then the superposition of residual stress after PWHT and operating stress at normal speed and overspeed were discussed. The investigated results show that operating stress can be affected significantly by welding residual stress, and the distribution trend of superposition stress at the weld area is mainly determined by welding residual stress. The superposition of residual stress and operating stress is linear superposition, and the hoop stress distribution of superposition stress is similar with the distribution of residual stress. With the increasing overspeed, the distribution pattern of the hoop superimposed stress remains almost unchanged, while the stress level increases.

Investigation on the Studies for Welding Residual Stresses in Nuclear Components (원전 기기 용접 잔류응력 평가 연구 고찰)

  • Kim, Jong Sung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • The paper investigates the previous studies about welding residual stresses in nuclear components. First, various residual stress measurement methods are reviewed in applicability. Second a finite element welding residual stress analysis technique, which was developed from the viewpoint of FFS (Fitness-For-Service) assessment, is explained. Third, characteristics of the welding residual stresses on J-groove welds and butt welds were presented via investigating the previous studies. Last, engineering formulae for residual stresses in the FFS assessment codes such as R6 and API 579/ASME FFS-1 Code is summarized.

Residual Stress Redistribution on Welds of Nuclear Component by Mechanical Stress Relieving Methods (기계적 응력이완 방법에 의한 원전기기 용접부의 잔류응력 재분포)

  • 이세환;김종성;진태은
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2004
  • Residual stresses, which can be produced during the welding process, play an important role in an industrial field. Welding residual stresses are exerting negative effect on the fatigue behavior and integrity of structure. In this study, as a result of the thermal elasto-plastic finite element analysis for the welds of a nuclear component, the residual stress distributions are estimated for as-welded condition. Also, finite element techniques are developed to simulate the relaxation of the residual stresses according to the various mechanical stress relieving(MSR) loads such as hydrostatic pressure loading, tensile pipe-end loading, and mechanical stress improvement process(MSIP) loading. Finally, the results of residual stress redistributions for various loading conditions are compared and reviewed qualitatively and quantitatively to find an optimum loading condition.

Fatigue Life Estimation of Welded Components Considering Welding Residual Stress Relaxation and Its Mean Stress Effect (잔류응력 이완 및 이의 평균응력 효과를 고려한 용접부 피로수명 평가)

  • Han, Seung-Ho;Han, Jeong-Woo;Shin, Byung-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.175-182
    • /
    • 2003
  • The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably. the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives.

Study on the Mechanical Behavior of Welded part in thick Plate (후판 용접부의 역학적 특성 -유한요소법에 의한 3차원 열탄소성 해석-)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.250-258
    • /
    • 1992
  • In order to clarify the mechanical behavior of welding crack and to evaluate the mechanical characteristics of welded parts in thick plate, it is very important to accurately predict the welding deformation and residual stress including transient state before welding. In this paper, the theory of a three-dimensional elasto-plastic problem for the analysis of mechanical phenomenon of welding joint on the plate is developed into an efficient and accurate method based on the finite element method, and then several examples are considered by using the proposed model. The results of numerical analyses are discussed in the viewpoint of the mechanical characteristics of the distribution of three-dimensional welding residual stresses, plastic strains and their production mechanism on the thick plate.

  • PDF

Investigation on effect of neutron irradiation on welding residual stresses in core shroud of pressurized water reactor

  • Jong-Sung Kim;Young-Chan Kim;Wan Yoo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.80-99
    • /
    • 2023
  • This paper presents the results of investigating the change in welding residual stresses of the core shroud, which is one of subcomponents in reactor vessel internals, performing finite element analysis. First, the welding residual stresses of the core shroud were calculated by applying the heat conduction based lumped pass technique and finite element elastic-plastic stress analysis. Second, the temperature distribution of the core shroud during the normal operation was calculated by performing finite element temperature analysis considering gamma heating. Third, through the finite element viscoelastic-plastic stress analysis using the calculated temperature distribution and setting the calculated residual stresses as the initial stress state, the variation of the welding residual stresses was derived according to repeating the normal operation. In the viscoelastic-plastic stress analysis, the effects of neutron irradiation on mechanical properties during the cyclic normal operations were considered by using the previously developed user subroutines for the irradiation agings such as irradiation hardening/embrittlement, irradiation-induced creep, and void swelling. Finally, the effect of neutron irradiation on the welding residual stresses was analysed for each irradiation aging. As a result, it is found that as the normal operation is repeated, the welding residual stresses decrease and show insignificant magnitudes after the 10th refueling cycle. In addition, the irradiation-induced creep/void swelling has significant mitigation effect on the residual stresses whereas the irradiation hardening/embrittlement has no effect on those.

Effect of Initial Defects on Welding Deformation and Residual Stress (강판의 초기不整이 용접변형.잔류응력에 미치는 영향)

  • 박정응
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.76-84
    • /
    • 1999
  • The residual stress generated when the steel plates were produced, did not influence on the out-of-plane deformation and residual stress generated by welding. When the initial deflection shape was a concave(Type I), the out-of-plane deformation became the same shape as that of the initial deflection and its magnitude became small. When the initial deflection made a winding in the welding direction(Type III), the out-of-plane deformation became large in the plate width. The initial deflection shape did not influence on residual stress and plastic strain produced by welding.

  • PDF

A Study on the Weld-Induced Deformation and Residual Stress Analysis at FPSO Moon Pool Structure (FPSO Moon Pool 구조의 용접변형과 잔류응력에 관한 연구)

  • Han, Sung-Woo;Lee, Joo-Sung;Kim, Sang-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.473-478
    • /
    • 2011
  • Welding process generates distortion and residual stress in the weldment due to rapid heating and cooling. Welding distortion and residual stress in the welded structure result in many troubles such as dimensional inaccuracies in assembling and safety problem during service. The accurate prediction of welding residual stress is thus very important to improve the quality of weldment and find the way to reduce itself. This paper presents the simulation of welding-induced residual stress analysis to examine the cause of cracking in the SUS-overlay welding specimen at FPSO Moon Pool structure.

Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer (고리 원전 가압기 PWOL의 용접 방향이 이종금속용접부 잔류응력 분포에 미치는 영향)

  • Bae, H.Y.;Song, T.K.;Chun, Y.B.;Oh, C.Y.;Kim, Y.J.;Lee, K.S.;Park, C.Y.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.88-93
    • /
    • 2008
  • Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a preemptive weld overlay(PWOL). PWOL was good for distribution of residual stress of dissimilar metal weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  • PDF