• Title/Summary/Keyword: Welding Residual Stress Relaxation

Search Result 44, Processing Time 0.029 seconds

A Quantitative Estimation of Welding Residual Stress Relaxation for Fatigue Strength Analysis (피로강도해석을 위한 용접잔류응력 이완의 정량적 평가)

  • Han, Seung-Ho;Lee, Tak-Kee;Shin, Byung-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2018-2025
    • /
    • 2002
  • It is well known that the strength and the fatigue life of welded steel components are affected extensively by welding residual stresses distributed around their weldments under not only monotonic but also cyclic loads. The externally applied loads are to be superimposed with the welding residual stresses, so that unexpected deformations and failures of the components might occur. These residual stresses are not kept constant, but relaxed or redistributed during in service. Under monotonic loads the relaxation takes place when the sum of external and welding residual stress exceeds locally the yield stress of material used. By the way, it is shown that under cyclic loads the welding residual stress is considerably relieved by the first or the early cycles of loads, and then gradually relaxed with increasing loading cycles. Although many investigations in this field have been carried out, the phenomenon and mechanism of the stress relaxation are still not clear, and there are few comprehensive models to predict amount of relaxed welding residual stress. In this study, the characteristics of the welding residual stress relaxation under monotonic and cyclic loads were investigated, and a model to predict quantitatively amount of welding residual stress relaxation was proposed.

An Experimental Study on The Effect of Residual Stress Relaxation due to Phase Transformation (상변태에 의한 잔류응력 완화효과에 관한 실험적 연구)

  • 장경호;이진형;김재환
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.216-218
    • /
    • 2003
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. And it is well known that volume expansion due to phase transformation could influence in the case of welding of high tensile strength steels on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. In this study, we investigated the effect of phase transformation on the relaxation of welding residual stress through experiment. And three-dimensional thermal elastic-plastic FEM analysis is conducted to compare the effect of phase transformation on the relaxation of welding residual stress in high strength steels(POSTEN60, POSTEN80) with analytical results which is not considering the effect of phase transformation on residual stress relaxation. According to the results, the extents of welding residual stress relaxation due to phase transformation in the case of welding of POSTEN60, POSTEN80 are 0.85 $\sigma$/$\sigma$$\sub$Y0/, 0.75$\sigma$/$\sigma$$\sub$Y0/, respectively.

  • PDF

Prediction Model for Relaxation of Welding Residual Stress under Fatigue Loads (피로하중하 용접잔류응력 이완 추정모델)

  • 한승호;신병천
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.84-90
    • /
    • 2002
  • The strength and the life of welded components are affected extensively by the residual stresses distributed around their weldments not only under static loads, but also fatigue loads. The residual stress can be superimposed with externally applied loads, so that unexpected deformations and failures of members will be occurred. These residual stresses are not kept constant, but relaxed or redistributed during in service. Under static loads the relaxation takes place when the external stress superimposed with the residual stress exceeds locally the yield stress of material used. It is shown that under fatigue loads the residual stress is considerably relieved by the first or flew cycle loading, and then gradually relaxed with increasing loading cycles. In this study the phenomenon and mechanism of the stress relaxation by mechanical means were investigated and a model to predict quantitatively the residual stress relaxation for the case of static and fatigue loading condition was proposed.

Numerical Analysis for Residual Stress Relaxation of Weld Zone (용접부 잔류응력의 이완에 관한 해석)

  • Seo, Jung-Won;Goo, Byung-Chun;Lee, Dong-Hyeong;Jung, Hong-Che
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.43-48
    • /
    • 2003
  • The problem of welding stresses and fatigue behavior is the main concerns of welding research fields. The residual stresses and distortion of structures by welding is exert negative effect on the safety of mechanical structures. That is, expansion of material by high temperature and distortion by cooling during welding process is caused of tensile and compressive residual stresses on welding material, and this residual stresses reduce fracture and fatigue strength of welding structures. The accurate prediction of residual stress and relaxation due to loading and post weld heat treatment of weld zone is very important to improve the quality of weldment. In this study, a finite element modeling technique is developed to simulate the relaxation of residual stresses due to loading and post weld heat treatment of weld zone. The accuracy of finite element models is evaluated based on experimental results and the results of the analytical solution.

  • PDF

Fatigue Life Evaluation Based on Welding Residual Stress Relaxation and Notch Strain Approach for Cruciform Welded Joint (용접잔류응력 이완 및 노치변형률법을 적용한 십자형 필렛용접 이음부의 피로수명 평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1103-1108
    • /
    • 2003
  • The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint.

  • PDF

N.M.for the Effect of P.T. on Resicual Stress Relaxation (잔류응력 완화에 미치는 상변태의 수치적 모델링)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

Numerical Analysis and Experimental Verification of Relaxation and Redistribution of Welding Residual Stresses (용접잔류응력의 이완과 재분포 해석 및 실험적 검증)

  • Song, Ha-Cheol;Jo, Young-Chun;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.84-90
    • /
    • 2004
  • For the precise assessment of the effect of welding residual stresses on structural strength and fatigue crack growth behavior, new FE analysis algorithms for the estimation of residual stress relaxation due to external load and redistribution due to fatigue crack propagation were proposed in this paper. Initial welding residual stress field was obtained by thermal elasto-plastic analysis considering temperature dependent material properties, and the amount of residual stress relaxation and redistribution were assessed by subsequent elasto-plastic analysis In the analysis of fatigue crack propagation, the applied SIF(Stress Intensity Factor) range was evaluated by $\frac{1}{4}$-point displacement extrapolation method, and the effect of welding residual stresses on crack propagation was considered by introducing the effective SIF concept. The test results of crack propagations were compared with the predicted data obtained by the analysis.

Residual Stress in Welds of High Strength Steel( POSTEN60, POSTEN80) (고강도강(POSTEN60, POSTEN80) 용접접합부의 잔류응력)

  • Chang, Kyong Ho;Lee, Chin Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.519-528
    • /
    • 2004
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. And it is well known that volume expansion due to phase transformation could influence in the case of welding of high tensile strength steels on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. In this study, we investigated the effect of phase transformation on the relaxation of welding residual stress through experiment. And three-dimensional thermal elastic-plastic FEM analysis is conducted to reproduce the effect of phase transformation on the relaxation of welding residual stress. Also we carried out the analysis of welding residual stress in welds of similar or dissimilar steels considering the effect of residual stress relaxation due to phase transformation.

Fatigue Life Estimation of Welded Components Considering Welding Residual Stress Relaxation and Its Mean Stress Effect (잔류응력 이완 및 이의 평균응력 효과를 고려한 용접부 피로수명 평가)

  • Han, Seung-Ho;Han, Jeong-Woo;Shin, Byung-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.175-182
    • /
    • 2003
  • The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably. the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives.

Relaxation of Welding Residual Stresses under Fatigue Loads (피로하중하 용접 잔류응력 완화의 정량적 평가)

  • Han, S.H.;Kang, S.B.;Shin, B.C.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.424-429
    • /
    • 2001
  • Residual stresses can be produced during manufacturing processes, eg. welding, machining and plastic working, and also in service. It can be superimposed with externally applied loads, so that unexpected deformations and failures of members will be occurred. Especially, the strength and the life of welded components are affected extensively by the residual stresses distributed around their weldments not only under static loads, but also fatigue loads. These residual stresses are not kept constant, but relaxed or redistributed during service. Under static loads the relaxation takes place when the residual stress superimposed with external stress exceeds locally the yield stress of material used. It is shown that under fatigue loads the residual stress is considerably relieved by the first or few cycle loading, and then gradually relaxed with increasing loading cycles. Although many investigations in this field have been carried out, the phenomenon and mechanism of the stress relaxation by mechanical means are still not clear, and there are few comprehensive models for predicting specific effects on the stress relaxation. In this study, the effects of applied static and fatigue loads on the residual stress relaxation were Investigated, and a model to predict quantitatively the residual stress relaxation was proposed.

  • PDF