• Title/Summary/Keyword: Welding laboratory

Search Result 110, Processing Time 0.022 seconds

DISTRIBUTIONS OF RESIDUAL STRESSES IN DIFFUSION BONDING OF DISSIMILAR MATERIALS TIAL TO STEEL 40CR

  • Peng, He;Jicai, Feng;Yiyu, Qian;Jiecai, Han
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.785-790
    • /
    • 2002
  • Distributions of residual stress in diffusion bonding of dissimilar materials intermetallics TiAl to steel 40Cr were simulated by FEM calculation. Results showed that destructive residual stresses presented in the minute area adjacent to bond-line of the base material with smaller coefficient of thermal expansion. Reducing bonding temperature and diminishing bonding time are in favor of the mollification of interface tresses.

  • PDF

Status of Welding Fume Concentration and Local exhaust Ventilation System at Welding Laboratory in Technical High School (공업고등학교 용접실습실의 용접흄 발생농도와 국소배기 실태)

  • Hwang, Sung-Hwan;Son, Bu-Soon;Jang, Bong-Ki;Park, Jong-An;Lee, Jong-Wha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This study was performed to evaluate a local exhaust ventilation system capability and welding fume concentration in welding laboratory at 5 technical high schools. Results of the study are as follows; 1. The personal exposure of welding fume in welding laboratory was measured. The geometric mean of 73 personal samples was $6.27mg/m^3$($3.85{\sim}9.88mg/m^3$), and 68.5% of these exceeded TLV of the Korea Ministry of Labor. 2. The geometric mean of welding fume at outside of booth was $2.27mg/m^3$($1.57{\sim}2.58mg/m^3$). All of measured concentrations were lower than TLV of the Korea Ministry of Labor. 3. Local exhaust ventilation system in welding laboratory could not remove hazardous substance effectively because of inappropriate canopy hood and absurd design. 4. The possibility of exposure risk was estimated to be high because of working point under breathing zone, misplacement of working table and insufficient supply of respiratory protector. 5. The mean values of capture velocity and transportation velocity of local exhaust ventilation system in welding laboratory were 0.38m/sec, 4.27m/sec respectively. These values were satisfied the guideline of the Korea Ministry of Labor. 6. The efficiency of performance of local ventilation system was anticipated to be decreased because of accumulated dust and alien substance on fan and duct.

  • PDF

Development of a jet air supplying welding mask for controlling welding fumes (압축공기를 이용한 용접흄 제어용 용접면(JASM)의 개발)

  • Song, Se-Wook;Kim, Jong-Gil;Ha, Hyun-Chul;Kim, Tae-Hyeung;Kim, Jong-Chul;Jung, Yu-Jin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.98-108
    • /
    • 2000
  • Controlling the over-exposure of welding fumes is not an easy problem because neither general nor local exhaust ventilation systems could be successfully applied. A jet air supplying welding mask was development to reduce the exposure level of welding fumes. The jet airs tream pushes the welding fumes away from the breathing zone by using the frictional characteristic of jet. Laboratory experiments were conducted to optimize the efficiency of controlling welding fumes. Thereafter, its performance was tested in a laboratory and an industrial field. The efficiencies of reducing the welding fume exposure were about 90% and 80% in a laboratory and an industrial field, respectively. Additionally, it resulted in elimination of heat inside the mask and enhancement of clear visuality.

  • PDF

Low cycle fatigue properties of hydrogenated welding sheets of Zr-Sn-Nb alloy using funnel-shaped flat specimens

  • Lian-feng, Wei;Chen, Bao;Shi-zhong, Wang;Yong, Zheng;Meng-bin, Zhou
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1724-1731
    • /
    • 2020
  • Low cycle fatigue tests on the hydrogenated welding seam of Zr-Sn-Nb alloy at room temperature and 360 ℃ had been carried out by using the funnel-shaped flat specimens. The relationships between nominal stress & strain directly measured across the funnel and local stress & strain at the root of the funnel are given by considering cyclic plasticity correction. The results show that the fatigue resistance of welding seam at room temperature is only slightly better than that at 360 ℃. Probabilistic fatigue life curves are obtained by using a two-parameter power function.

Evaluation of Welding strength with welding voltage and current in $CO_2$ Welding Plate ($CO_2$ 용접재의 용접전압과 용접전류에 따른 강도 평가)

  • 송준희;문창렬;임재규
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.261-263
    • /
    • 2004
  • 상용차의 다양한 모델의 변화에 따른 여러 가지 용접부의 이음형태를 가지는 차체부품이 요구됨에 따라 생산성 향상을 위해 용접재의 두께별, 형태별 용접조건의 최적화가 시급히 요구된다$^{1.2)}$ . (중략)

  • PDF

Effect of Process Parameters on the High Speed Seam Weldability of Tin Coated Steels for the Small Containers

  • Kim, K.C.;Lee, M.Y.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • High speed seam weldability of tin coated steels was investigated. Welding was performed by the laboratory wire seam welder that was equipped with process monitoring system Test results showed that increase in applied current and pressure reduced the total resistance across the welding electrodes. Lower and upper limits of welding current increased as the sheet thickness increased, while the acceptable welding condition range decreased. However, extremely low electrode pressure produced unstable welding condition range. The results also demonstrated that slower welding speeds widened the optimum welding heat input range.

  • PDF

A NOVEL APPROACH TO COMPACTLY BRAZE ALUMINUM ALLOYS

  • Qian, Yiyu;Dong, Zhangui;Liu, Jun
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.545-550
    • /
    • 2002
  • In order to ensure the signal could be transported cocrrectly, the microwave devices made of Aluminmn alloys must be assembled and brazed flaw-freely. In this paper, a new approach of using contact reactive brazing (CRB) process to realize the compact brazing of Aluminum alloys was put forward. The reason for this is that CRB, which realizes bonding depending on the liquid alloy produced by metallurgy reaction between the materials to be joined, overcomes the limitation of traditional brazing that the macroscopically disorganized filling flow of liquid filler metal would result in defects in brazed seam. Joint ofLF21 (AA3003) with the compactness of over 95% was brazed by the method of CRB using Si powder as an interlayer. At last, the influence of the physical parameter related to the Si powder interlayer on the compactness of the joints was investigated in detail.

  • PDF

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.