• Title/Summary/Keyword: Wet Scrubber

Search Result 88, Processing Time 0.023 seconds

Simultaneous removal of $SO_X$ and $NO_X$ by wet scrubber at small and medium craft (중소형 선박의 $SO_X/NO_X$ 동시제거를 위한 습식세정시스템)

  • Cha, Yu-Joung;Lee, Ju-Yeol;Ha, Tae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.159-166
    • /
    • 2014
  • In recent years, researchers have put a considerable effort to decrease the emission of harmful gaseous pollutants to the atmosphere. In order to remove simultaneously $SO_2$ and $NO_X$ from the flue gas of small and medium-sized ship, we designed minimal wet scrubber inside a compact multistage modular system. In this study we proceed experiment of elemental technology at each stage of the scrubber. The each stage is oxidation of NO which is the main component of $NO_X$, and removal of $SO_2$, respectively. $NaClO_2$ was used to oxidize NO gas, and NaOH was used to remove $SO_2$ gas. The maximum NO conversion efficiency and the $SO_2$ removal efficiency are both indicate 100%.

Removal Efficiencies Estimation of Air Pollutants at Wet Scrubber Using Activated Carbon (활성탄 사용에 따른 습식세정시설에서의 대기오염물질 제거효율 평가)

  • 신찬기;권명희;전종주;신대윤
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • This study carried out to recommend adaptable technologies and countermeasures for performance improvement of Wet Scrubber(WS) in industrial waste incinerator. When not using the Activated Carbon(AC), the removal efficiency of dust and HCl is 73%, 92%. And particulate phase and gaseous phase dioxins removal efficiency was evaluated up to 31% and 12%. In this case, dioxins enrichment was not revealed in WS. When using the AC mixing with scrubbing water, the case of 1,000ppm, removal efficiency of particulate phase dioxins was about 51%, and gaseous phase dioxins was about 96%. The case of 2,000ppm, removal efficiency of particulate phase dioxins was about 55%, and gaseous phase dioxins was about 97%. And the case of 3,500ppm, the removal efficiency of particulate phase dioxins was about 35%, and gaseous phase dioxins was about 96% respectively. By this study, using the AC was more useful to remove the gaseous phase dioxins, and needed to use proper concentration of the AC, that in case of 3,500ppm, the particulate phase dioxins removal efficiency was more lower than other cases.

Ammonia and Hydrogen Sulfide Removal from Swine House Exhaust Air Using a Dip Injection Wet Scrubber

  • Shin, Myeongcheol;Lee, Seunghun;Wi, Jisoo;Ahn, Heekwon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.615-622
    • /
    • 2017
  • This study was conducted to evaluate the odor reduction efficacy of the dip injection wet scrubber (DIWS) using tap water as washing fluid. The $NH_3$ and $H_2S$ removal efficiency of 7 day batch operated DIWS was evaluated twice over a total of 14 days of experiment. The $NH_3$ removal efficiency ranged from 26 to 37%. The $H_2S$ removal efficiency was between 22 and 30%. The pH of the washing fluid maintained below 8 and the $NH_4{^+}$ concentration tended to keep constant around 350 ppm after 5 days of washing-fluid replacement. Therefore, the 5-day washing fluid replacement interval is more preferable than the 7-day interval. The $NH_4{^+}$ concentration and the electrical conductivity (EC) showed a high correlation. The EC measurement can be used as an alternative to conventional $NH_4{^+}$ concentration measurement method for real time monitoring of washing fluid condition.

Complex Mal-odor Treatment of Foodwaste with Micro-bubble generated from Enhanced Wet Scrubber (습식세정장치에서 발생되는 마이크로버블을 이용한 음식물쓰레기 발생 복합악취 처리)

  • Kim, Ye-Jin;Jung, Jae-Ouk;Jung, Yong-Jun
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • The objective of this work was to treat complex mal-odor of food waste with micro-bubbles from enhanced wet scrubber system, where the pilot plant was operated. Micro bubbles from the enhanced reactor of venturi scrubber were successfully generated through the air atomizing process with high velocity more than 60 m/sec and played an important role in the removal of mal-odor. Mal-odor was effectively changed into the micro-bubble and treated with washing chemicals together. Through establishing two series connection of the reactors, 85.2 % removal efficiency of complex mal-odor was obtained in case of average 940 times of input air. 0.35 kg/hr of sulfuric acid, 0.188 kg/hr of sodium hydroxide and 0.043 kg/hr of hypochlorite were injected for chemical washing.

Computational Analysis on the Control of Droplet Entrained in the Exhaust from the Spray Type Scrubber system (스프레이형 스크러버의 배출가스에 포함된 액적의 제어방법에 관한 전산해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang;Koo, Seongmo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.191-199
    • /
    • 2015
  • The SOx emission from the ship diesel engines will do a negative influence to the human health and the environment. To reduce the negative environmental effect of the SOx emission caused by the high traffic of ship movements, the SECA (SOx emission control area) has been set on several province around world to carry out the severe emissions control and to meet the emissions control standard. To cut down the SOx emission from the ships, the wet type scrubber is being used widely. In this work, we prepared a numerical model to simulate the spray type scrubber to study the motion of liquid droplets in the flow of the scrubber. For the analysis, the CFD (computational fluid dynamics) method was adopted. As a special topic of the study, we designed the wave plate type of mist eliminator to check the carry over of the uncontrolled water droplet to the exhaust. Numerical analysis is divided into two stages. At the first stage, the analysis was done on the basic scrubber without the mist eliminator, and then the second stage of analysis was done on the scrubber with the mist eliminator on several condition to check and compare with the basic scrubber. On the condition of the basic scrubber, 42.0% of the distributed water droplets were carried over to the exhaust. But by adding the designed droplet eliminator at the exhaust of the scrubber, only 3.4% of the distributed water droplets supplied to the scrubber was emitted to the atmosphere.

Trend and Prospect of Scrubber Technology for Regulatory on Sulfur Content in Marine Fuel Oil (선박 연료의 황 함유량 규제에 따른 스크러버 기술의 동향과 전망)

  • Eom, Hanki;Park, Byung Hyun;Jeong, Soon-Kwan;Kim, Sung Su
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.5
    • /
    • pp.1-13
    • /
    • 2019
  • 국제해사기구(IMO, international maritime organization)는 2015년부터 배출규제해역(ECA, emission control area)을 운항하는 선박은 황 함유량이 0.1%(m/m) 이하로 강화된 기준을 만족하는 연료를 사용해야 하며, 2020년부터는 모든 선박에 대해 황 함유량이 0.5%(m/m) 이하인 연료를 사용하거나 동등 이상의 성능을 갖는 배출가스 후처리 장치의 설치를 의무화하였다. 이에 따라, 선박에서 배출되는 오염물질을 제어할 수 있는 다양한 기술이 개발되고 있으며, 후처리 관점에서 습식 스크러버(wet scrubber)는 선박의 디젤 엔진에서 배출되는 이산화황(sulfur dioxide)을 저감시키기 위한 가장 적합한 해결책으로 알려져 있다. 습식 스크러버는 해수를 사용하는 개방형 스크러버(open loop scrubber)와 화학세정수를 사용하는 폐쇄형 스크러버(closed loop scrubber)로 구분된다. 습식 스크러버는 오염물질의 효율적인 처리가 가능하지만 유지보수비가 비싸고, 폐수 발생으로 인한 2차 오염발생 및 부식에 매우 취약한 단점이 있다. 따라서 최근에는 스크러버 내부의 부식을 방지하기 위한 내부식성 재질에 관한 연구와 흡수제(absorbent)의 고도화 연구가 활발히 진행되고 있다. 또한, 하이브리드형 스크러버(hybrid scrubber)는 개방형과 폐쇄형 스크러버의 장점을 결합한 기술로 황산화물의 배출을 규제하는 배출규제해역에서는 폐쇄형 스크러버를 가동하고, 선박이 공해상으로 진입할 경우 개방형 스크러버로 전환함에 따라 황산화물 배출 및 반응 후 세척수의 폐수배출 기준을 동시에 만족할 수 있다.

Study on Wet Scrubber for SOX/NOX Treatment in Ship Flue Gas (선박 배가스내 SOX/NOX 처리용 습식 스크러버에 대한 연구)

  • Choi, Jin-Sik;Kim, Jae-Gang;Park, Byung Hyun;Lee, Ju-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.183-188
    • /
    • 2017
  • This study deals with $de-SO_X$ and $de-NO_X$ process of a wet scrubber for small size ship engines. The experiment was conducted according to the E3 mode of the $NO_X$ technical code. In order to discharge the sulfur containing flue gas, ditertiarybutyldusulfide was added to the diesel fuel to increase the sulfur content. NO gas, which occupies most of the nitrogen oxides in the exhaust gas, was oxidized into $NO_2$ and absorbed by a wet scrubber. The developed equipment of this work achieved 100% of removal efficiency for highly soluble $SO_2$ gas in an aqueous solution.

Investigation of decontamination characteristics of a serial multiple pool scrubber system for consequence mitigation of severe accidents

  • Hyeon Ho Byun;Man-Sung Yim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4585-4600
    • /
    • 2022
  • A pool scrubber is often used as a wet-type design to mitigate the consequence of a severe nuclear accident. While studies indicated higher decontamination performance of a deeper pool, utilizing a very tall pool can be problematic due to potential structural stability and water backflow issues. This study proposes, as an alternative to a single pool system, a pool scrubber system composed of serially connected multiple pools with lower heights. Since large fraction of aerosol removal takes place in the injection region, serially connected pool scrubber system is expected to enhance the overall decontamination capability of a pool scrubber system. To support the analysis of the proposed system's decontamination capability, a new computer model was developed in the study to describe the bubble size dependent effect on aerosol removal including the effect of pool residence time. The accuracy of the new model was examined against experimental data for its validation. The proposed scrubber system composed of serially connected multiple shorter pools is found to have much improved decontamination performance over the current single pool system design.