• Title/Summary/Keyword: Wetland Sediments

Search Result 64, Processing Time 0.031 seconds

Observations of Variations in Soil Organic Carbon and Carbon Dioxide in the Constructed Wetland at Goheung Bay (고흥만 인공습지의 토양유기탄소와 이산화탄소 변동 관측)

  • Kang, Dong-Hwan;Kim, Sung-Soo;Kwon, Byung-Hyuk;Kim, Il-Kyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Seasonal variations in carbon dioxide in the air and soil organic carbon in the sediments were monitored at the constructed wetland formed by reclamation work at Goheung Bay. Sediment sampling in the constructed wetland and carbon dioxide measurement in the air were conducted on June 16 and August 23, 2007. Sediments in the constructed wetland were sampled at 11 different points (June 16) and 14 points (August 23), while carbon dioxide in the air was measured at 13 points (June 16) and 15 points (August 23). Water content and organic carbon in the sampled sediments were analyzed in the laboratory. Water content of the sediments was higher than that of general soil, and the variation between June and August was not evident. The amounts of organic carbons in the sediments sampled on August 23 were higher than those sampled on June 16. Also, there was more organic carbon in the sediments sampled at the field of reeds than in the pure wetland area. Daily maximum variation in carbon dioxide in the air was higher on June 16, but the amount of carbon dioxide in the air was greater on August 23. The results of the study suggest that organic carbon in the sediments and carbon dioxide in the air were greater in summer (August 23) than in spring season (June 16) in the constructed wetland at Goheung Bay.

Implication of the Ratio of Exchangeable Cations in Mountain Wetlands (산지습지 치환성 양이온 함량비의 특성과 함의)

  • Shin, Young Ho;Kim, Sung Hwan;Rhew, Hosahang
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.221-244
    • /
    • 2014
  • We suggested several implications by examining geochemical properties of sediments in Simjeok, Jangdo, and Hwaeomneup mountain wetlands which are natural preservation areas. Geochemical properties of wetland sediments show that all wetlands were included in the type of fens, but their distribution patterns were different from one another. We classified three sub-groups of sediments using the two step cluster analysis on the ratio of exchangeable cations. Wetland sediments can be grouped into Ca-dominated, Mg-dominated, and K-dominated types. Simjeok wetland have Ca-dominated sediments, while the sediments of Jangdo wetland indicate the Mg-dominated and Ca-dominated characteristics. Hwaeomneup wetland is composed of K-dominated sediment mainly. Different properties in the ratio are affected by various environmental factors such as geological, pedological, and vegetational settings. Because these geochemical properties will be affected by climate change and human impacts, these will be environmental indicator in mountain wetlands and be used in wetland management. This scheme can be used for classification of mountain wetlands. Therefore, we should work on geochemical properties of wetland sediments and classification schemes based on geochemical properties not only to widen understanding in geomorphic system or ecosystem of mountain wetlands but to conserve mountain wetlands properly.

  • PDF

Toxicity test of wetland sediments by Simocephalus mixtus (국내종 물벼룩 Simocephalus mixtus에 의한 습지퇴적물 독성도 측정)

  • 이찬원;권영택;윤종섭;문성원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.851-855
    • /
    • 2002
  • A comparison of Daphnia magna, Ceriodaphnia dubia and Simocephalus mixtus toxicity test was performed to study the relative sensitivities and discrimination abilities with both pore and elutriate water of Woopo wetland sediments. Sediment risk assessment has been done by standardized preparation method of pore and elutriate water described in the joint US EPA-US Army Crops of Engineers manual. Simocephalus mixtus which was obtained from Woopo wetlands in Korea was cultured and applied to sediment toxicity test. Water quality in Woopo wetland had great site and seasonal variations. S. mixtus was more sensitive than D. magna in heavy metal toxicity test. The toxicity results with S. mixtus reflected the water quality of elutriate and pore water. The results also suggested that S. mixtus could be used as a test organism in estimating potential risk of contaminated sediments.

Determination of Heavy Metal Content in Astacus leptodactylus caspicus of Anzali Wetland, Iran

  • Riahi, A.R.;Fazeli, M.Sh.;Paydar, M.
    • The Korean Journal of Ecology
    • /
    • v.27 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • With attention to different human activities around Anzali wetland and introduction of different pollutants containing heavy metals into this water ecosystem and absorption and accumulation of heavy metals in shell and muscle of Astacus leptodactylus which is native benthose of Anzali wetland and enjoys food and economic importance; Sampling of waters and sediments from 18 stations and shell and muscle of Astacus leptodactylus from 5 stations had been conducted. After biometric evaluation of Astacus leptodactylus, the chemical analysis of the samples by using international and standard methods and then their heavy metals content was determined by Atomic Absorpotion Spectrophotometer (AAS), model P.U 9400 philips. Result of the analysis stated that; 1) The mean values of Cr, Zn, Pb, Ni, V in Anzali waters were 6.4, 184.5, 28.8, 28.9, 47.1 ($\mu$ gr/lit) respectively, which comparing to the international standards, is not suitable for drinking, but it can be used for agricultural and aquacultural purposes. Even though the concentration of heavy metals in sediments were high, there are in range of acceptable limit for aquatics organisms; 2) Comparatively, the concentration of heavy metals in shell and muscle of Astacus leptodactylus in Anzali wetland (Cr, Zn, Pb, Ni, V in shell were 3.48, 109.3, 14.13, 7.17, 36.2 and in muscle were 2.98, 131.98, 3.12, 4.77, 9.05 ppm respectively) were more than what is determined for Aras dam (in shell were 1.6, 224.3, 7.8, 7.6, 10.3 and in muscle were 1.4, 60.2, 0.45, 2.7, 4.4 mg/kgr respectively); 3) For all samples, concentration of heavy metals in all Astacus leptodactylus in Anzali wetland and Aras dam, was at tolerance level for human consumption; 4) There was no association with significant difference between weight and size of Astacus leptodactylus with absorption and accumulation of heavy metals; but there was a significant association between heavy metals content in water and in sediments, and in sediments, shell and muscle of Astacus leptodactylus in Anzali wetland.

A Study on Land-cover and Sedimentary Environment Changes Before and After the 2020 Flood in the Seomjin River Chimsil Wetland (섬진강침실습지의 2020년 홍수 전·후 토지피복 및 퇴적환경 변화 연구)

  • Lee, Ye-Seul;Lim, Jeong-Cheol;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.15-30
    • /
    • 2021
  • This study analyzed the changes in land-cover and sedimentary environment before and after flooding through drone images and sediment analysis for the Seomjin River Chimsil Wetland. The results showed that the area of some land-covers such as sand bar, grass, and trees were continuously changed. The acidity level of the sediments in the Seomjin River Chimsil Wetland was weakened gradually by flooding and EC was also decreased. The levels of organic matter, effective phosphoric acid, and CEC, however, were fluctuating depending on branches, which seems to be the result of landization as new sedimentary environment was developed and vegetation was settled after the flood. Average mean size of river sediments was found to be fine sand, and it exhibited various particle size characteristics from granule to medium silt depending on the location. As the sedimentary environment changed due to the effects of floods and typhoons, the particles were granulated or grain refined depending on the position. In the Seomjin River Chimsil Wetland, there were factors that could interfere with geomorphic development and sedimentary environment, contamination sources in and around the wetland, and natural threat factors. Therefore, in this study, a conservation and management plan was proposed to remove these threat factors and to preserve the scarcity, naturalness, and dynamics of Seomjin River Chimsil Wetland.

Hydrogeological Characteristics of a Riverine Wetland in the Nakdong River Delta, Korea

  • Jeon, Hang-Tak;Cha, Eun-Ji;Lim, Woo-Ri;Yoon, Sul-Min;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.425-444
    • /
    • 2021
  • Investigating the physical and chemical properties of riverine wetlands is necessary to understand their distribution characteristics and depositional environment. This study investigated the physical (particle size, color, and type) and chemical properties (organic, inorganic, and moisture contents) of sediments in Samrak wetland, located in the Nakdong River estuary area in Busan, South Korea. The particle size analysis indicated that the hydraulic conductivity values for the coarse grain and the mixture of coarse and fine grains ranged from 2.03 to 3.49×10-1 cm s-1 and 7.18×10-3 to 1.24×10-7 cm s-1, respectively. In-situ water quality and laboratory-based chemical analyses and radon-222 measurement were performed on groundwater and surface water in the wetland and water from the nearby Nakdong River. The physical and chemical properties of Samrak wetland was characterized by the sediments in the vertical and lateral direction. The concentrations of chemical components in the wetland groundwater were distinctly higher than those in the Nakdong River water though the wetland groundwater and Nakdong River water equally belonged to the Ca-HCO3 type.

Wet/dry Repetitions of Centennial Scale Reconstructed by Inorganic Chemistry of the Mid-Holocene Hwayang Wetland in the West Coast of Korea

  • Yang, Dong-Yoon;Kim, Ju-Yong;Nahm, Wook-Hyun;Yi, Sang-Heon;Kim, Jin-Kwan;Kim, Jeong-Chan;Lee, Jin-Young
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.2
    • /
    • pp.69-73
    • /
    • 2007
  • Inorganic geochemical and mineralogical analyses from the trench sediments of the Hwayang wetland were carried out to verify the wet/dry conditions during 6000 - 5000 yr BP and abnormal event of 6300 yr BP of Korean west coast. Lithostratigraphy, mineralogy and major element concentrations of the sediments of the trench indicate that during 6000 - 5000 yr BP, a wet/dry conditions might be repeated at an interval of 200 years. Carbonate minerals precipitated with the decrease of water depth in the lake or wetland after about 6000 yr BP. On the other hand, the sediments coarser in mean grain size and larger in standard deviation were corresponded with periods of 6300 yr BP and 6230 yr BP. Especially, such a feature of grain size distribution of 6300 yr BP appears in other wetlands situated in the west coast, e.g., Hwangsan wetland and Cheollipo coastal wetland. During the period, the coarse sediments seem to have been delivered by a high energy like storming.

  • PDF

Vertical Distribution of Persistent Heavy metals in Core Sediments from Upo Wetland (자연습지 우포늪 퇴적물의 연도별 잔류성 중금속 축적도)

  • Lee, Chan Won;Boo, Min Ho;Jeon, Hong Pyo;Lim, Kyung Won;Kim, Ki Ho
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.27-35
    • /
    • 2008
  • Sediment cores were obtained from Upo and Mokpo in Upo Wetland and core samples were divided by depth into 20 ~ 21 subsamples. The heavy metal concentrations of Fe, Mn, Zn, AS, Cu, Cd, Ni, Pb, and Cr in the sediments of each depth were determined by ICP-MS. The texture of sediemnts from Upo Wetland appeared to be clayey silt with average grain size of $7.52{\sim}11.15{\mu}m$ for physical properties. It was found to have a clear tendency of depth profile with respect to TOC and ignition loss. Organics were stabilized in the range of 0.5 ~ 0.7 % TOC and 8 ~ 9 % ignition loss in 30 years, whereas, the surficial sediments have the highest concentrations of about 3.0 % of TOC and 13 ~ 15 % ignition loss. Those are much higher than the values of the main stream, the Nakdong River, which reflects the deposit of biodegradable organics from plants and other lifes. The vertical distribution of heavy metals in two sediment cores was investigated to elucidate historical trends of heavy metals deposited into Upo wetland. The depth profile concentrations of each heavy metal were compared and discussed with the Concensus-Based Sediment Quality Guidelines for freshwater ecosystems. All the Cd data for the vertical distribution in the sediments were detected above PEC value for Cd, which predict harmful effects on sediment-dwelling organisms expected to occur frequently. The concentrations of Zn, Cu, and Cr in all sediment samples for depth profile were detected below the TEC values, which provided a basis predicting the absence of toxicity by Zn, Cu, and Cr.

  • PDF

A Modeling Approach: Effects of Wetland Plants on the Fate of Metal Species in the Sediments (퇴적물에서 금속 이온 거동에 미치는 습지 식물의 영향에 관한 모델 연구)

  • Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.603-610
    • /
    • 2008
  • A mathematical model was developed to understand how the presence of plants affects vertical profiles of electron acceptors, their reduced species, and trace metals in the wetland sediments. The model accounted for biodegradation of organic matter utilizing sequential electron acceptors and subsequent chemical reactions using stoichiometric relationship. These biogeochemical reactions were affected by the combined effects of oxygen release and evapotranspiration driven by wetland plants. The measured data showed that $SO_4{^{2-}}$ concentrations increased at the beginning of the growing season and then gradually decreased. Based on the measured data, it was hypothesized that the limitation of the solid phase sulfide in direct contact with the roots may result in the gradual decrease of $SO_4{^{2-}}$ concentrations. With the dynamic formulation for the limitation of the solid phase sulfide, model simulated time variable sulfate profiles using published model parameters. Oxygen release from roots produced divalent metal species (i.e. $Cd^{2+}$) as well as oxidized sulfur species (i.e. $SO_4{^{2-}}$) in the sediment pore water. Evapotranspiration-induced advection increased flux of divalent metal species from the overlying water column into the rhizosphere. The increased divalent metal species were converted to the metal sulfide with sufficient FeS around the rhizosphere, which contributed to the decrease of bioavailability and toxicity of divalent metal activity in the pore water. Since the divalent metal activity is a good predictor of the metal bioavailability, this model with a proper simulation of solid phase sulfide plays an essential role to predict the dynamics of trace metals in the wetland sediments.

Characteristics of Blue Carbon Stock by Particle Size of Sediments in Unvegetated Tidal Flats : Hampyeong Bay and Dongdae Bay (비식생 갯벌에서 퇴적물 입도에 따른 블루카본 저장 특성: 함평만과 동대만)

  • Kyeong-deok Park;Dong-hwan Kang;Yoon Hwan So;Won Gi Jo;Byung-Woo Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.181-189
    • /
    • 2023
  • In this study, sediment cores from unvegetated tidal flats in the Hampyeong Bay (west coastal wetland) and Dongdae Bay (south coastal wetland) were sampled, the blue carbon stock in the sediments was calculated, and the characteristics of the blue carbon stock were analyzed based on particle size of the sediments. The sediments in the Hampyeong Bay tidal flat had large particle size and low mud content, and the Dongdae bay tidal flat had small particle size and high mud content. The organic carbon content and blue carbon stock in the sediments were higher in the Dongdae tidal flat than in the Hampyeong Bay tidal flat. As a result of the regression function, in both the Hampyeong Bay and Dongdae Bay tidal flats, the sediments had the smaller particle size and higher mud contents the higher the organic carbon content and blue carbon stock. The sediments with smaller particle size had the larger specific surface area, so were feasible to adsorb and store more organic matters.