• Title/Summary/Keyword: Wheat bran

Search Result 485, Processing Time 0.036 seconds

Rheological Properties of Dough Added with Wheat Bran (밀기울 첨가 반죽의 물리적 특성)

  • 김영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1125-1131
    • /
    • 1998
  • The rheological properties of wheat flour dough were investigated in the dough added with 0, 10, 15, 20, 25 and 30% of wheat bran. The ratios of ash contents in wheat flour and wheat bran were 0.43% and 5.28%, respectively. The ratios of fiber contents in wheat flour and wheat bran were 0.18% and 11.86%, respectively. The farinograph water absorption was increased as the amount of wheat bran was increased. Both arrival time and development time of the dough added with wheat bran were longer than those of wheat flour. As the amount of wheat bran was increased, the weakness was increased. The extensograph showed that extensibility and resistance to extension of dough were decreased, while the ratio of resistance to extensibility(R/E) was increased with increasing the amo unt of wheat bran. The maximum viscosity by amylograph was decreased gradually with the adding amount of wheat bran, while the gelatinization temperature was slightly increased with wheat bran.

  • PDF

Wheat Bran and Breast Cancer : Plausibility of the Estrogen Hypothesis

  • Cho, Susan-Sungsoo;Sharon Rickard;Chung, Chin-Eun
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.160-166
    • /
    • 2003
  • To examine the evidence that wheat bran is protective against breast cancer development and that its main mechanism of action is by modulating estrogen metabolism. This review explores the role of different experimental factors on the anticancer effects of wheat bran and the relationship of changes to estrogen metabolism by wheat bran on breast cancer risk The timing of the experimental diets in relation to carcinogen administration, the length of feeding of the experimental diets, and the level of dietary fat had an impact on the effectiveness of different doses of wheat bran in reducing breast carcinogenesis. Wheat bran supplementation resulted in significant reductions in human plasma estrogen levels but not in that of animals tested. The change in excretory metabolism of estrogen by wheat bran feeding in animals was not related to any of the tumor indices measured. The protective effect of wheat bran in breast carcinogenesis is greatest at the promotional phase and when supplemented in a high fat diet. Doses of wheat bran in the 9-12% range in diet have been consistently protective. The inconsistency observed with higher doses of wheat bran may be dependent on the animal model used. Although wheat bran's inhibitory effects on tumor growth may involve changes to estrogen metabolism, the fiber and phytochemical components of wheat bran may also act through estrogen-independent mechanisms. For a better understanding of the effect of wheat bran on breast carcinogenesis, studies comparing the effects of different wheat bran components both alone and in combination need to be performed.

Quality Characteristics and Antioxidant Activity of Tteokbokkidduk Supplemented with Wheat Bran Powder (밀기울 분말 첨가 떡볶이 떡의 품질 특성 및 항산화 활성)

  • Park, So Young;Sim, Ki Hyeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.1
    • /
    • pp.16-33
    • /
    • 2022
  • The quality characteristics and antioxidant activity of Tteokbokkidduk alone or supplemented with 3%, 6%, 9%, and 12% wheat bran powder were assessed, to increase use of the wheat bran by-product of wheat milling. The moisture content, pH, and starch elution of Tteokbokkidduk increased with increasing wheat bran powder, while the water absorption rate did not. The L color value decreased and the a and b values increased with increasing wheat bran powder. Scanning electron microscopy of Tteokbokkidduk prepared with 0% and 3% wheat bran powder revealed uniform pore size distribution. In terms of texture profile analysis, hardness and chewiness increased, while cohesiveness decreased with increased content of wheat bran powder. Acceptance was highest for samples with 6% wheat bran powder. Quantitative description analysis (QDA) revealed increased brownness, roughness, nutty, bitterness, astringency, savory character, and hardness, and decreased adhesiveness, springiness, and chewiness with increased wheat bran powder. Principal component analysis (PCA) revealed highest overall acceptance of samples prepared with 6% wheat bran powder, reflecting the relatively low values of detrimental sensory characteristics. Antioxidant activities of Tteokbokkidduk increased as wheat bran powder content increased. The addition of 6% wheat bran powder resulted in excellent Tteokbokki in terms of acceptance, quality, and antioxidant activity.

Net energy and its establishment of prediction equations for wheat bran in growing pigs

  • Zhiqian, Lyu;Yifan, Chen;Fenglai, Wang;Ling, Liu;Shuai, Zhang;Changhua, Lai
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.108-118
    • /
    • 2023
  • Objective: The objective of this experiment was to determine the net energy (NE) value of 6 wheat bran and 1 wheat shorts by indirect calorimetry and establish the NE prediction equations of wheat bran fed to growing barrows. Methods: Forty-eight growing barrows (28.5±2.4 kg body weight) were allotted in a completely randomized design to 8 dietary treatments that included a corn-soybean meal basal diet, 6 wheat bran diets and 1 wheat shorts diet. The inclusion level of wheat bran or wheat shorts in diets is 30%. Results: The addition of wheat bran reduced the apparent total tract digestibility (ATTD) of nutrients (p<0.05). The ATTD of gross energy, crude protein (CP) and dry matter (DM) in the wheat shorts were greater than that in the wheat bran. Addition of wheat bran or wheat shorts had no effect on total heat production and fasting heat production. The NE of wheat bran was negatively correlated with neutral detergent fiber (r = -0.84; p<0.05) and acid detergent fiber (r = -0.83; p<0.05), while it was positively correlated with CP (r = 0.92; p<0.01). The NE values of wheat bran ranged from 6.79 to 8.15 MJ/kg DM, and the NE value of wheat shorts was 12.47 MJ/kg DM. The ratio of NE to metabolizable energy for wheat bran fed to growing pigs was from 66.0% to 71.7%, whereas the value for wheat shorts was 83.7%. Conclusion: The NE values of wheat bran ranged from 6.79 to 8.15 MJ/kg DM, and the NE value of wheat shorts was 12.47 MJ/kg DM. The NE value of wheat bran can be well predicted based on energy content and proximate analysis.

Chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia

  • Natalia S. Fanelli;Leidy J. Torres-Mendoza;Jerubella J. Abelilla;Hans H. Stein
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.105-115
    • /
    • 2024
  • Objective: A study was conducted to determine the chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia, and to test the hypothesis that production area or production methods can impact the chemical composition of wheat co-products. Methods: Samples included seven barley grains, two malt barley rootlets, one corn gluten feed, one corn gluten meal, one corn bran, eight wheat brans, one wheat mill mix, and four wheat pollards. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid hydrolyzed ether extract, ash, minerals, starch, and insoluble dietary fiber and soluble dietary fiber. Malt barley rootlets and wheat co-products were also analyzed for sugars. Results: Chemical composition of barley, malt barley rootlets, and corn co-products were in general similar across countries. Wheat pollard had greater (p<0.05) concentrations of tryptophan, magnesium, and potassium compared with wheat bran, whereas wheat bran had greater (p<0.05) concentration of copper than wheat pollard. There were no differences in chemical composition between wheat bran produced in Australia and wheat bran produced in Thailand. Conclusion: Intact barley contains more starch, but fewer AA, than grain co-products. There were only few differences in the composition of wheat bran and wheat pollard, indicating that the two ingredients are similar, but with different names. However, corn gluten meal contains more protein and less fiber than corn bran.

Quality Characteristics of High-Fiber Breads Added with Domestic Wheat Bran (국산밀 제분부산물을 첨가한 고식이섬유빵의 품질 특성)

  • Lee, Young-Tack
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.323-328
    • /
    • 2003
  • Wheat bran, a milling by-product of domestic wheat grains, containing approximately 42% of the total dietary fiber, was tested for the effects on bread-making properties. The amylograph peak viscosity and set bark values considerably decreased with increasing levels $(0{\sim}30%)$ of wheat bran. Adding wheat bran somewhat increased water absorption and showed no consistent effect on mixing time. Yeast-leavened breads were baked with wheat flour with up to 30% of the flour substituted with domestic wheat bran. Adding domestic wheat bran exerted detrimental effect on loaf volume and decreased sensory acceptability such as crust and crumb color, crumb grain, texture, and flavor. Wheat bran decreased lightness and imparted red and yellow tint. It was suggested that domestic wheat bran could be substituted for wheat flour at levels up to 15% without significantly depressing bread quality in the preparation of high-fiber bread. Crumb firmness of bread containing 15% wheat bran was significantly higher than that of the control bread (100% wheat flour) and increased rapidly at $2{\sim}3$ days during storage.

Effects of Inclusion Levels of Wheat Bran and Body Weight on Ileal and Fecal Digestibility in Growing Pigs

  • Huang, Q.;Su, Y.B.;Li, D.F.;Liu, L.;Huang, C.F.;Zhu, Z.P.;Lai, C.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.847-854
    • /
    • 2015
  • The objective of this study was to determine the effects of graded inclusions of wheat bran (0%, 9.65%, 48.25% wheat bran) and two growth stages (from 32.5 to 47.2 kg and 59.4 to 78.7 kg, respectively) on the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD) and hindgut fermentation of nutrients and energy in growing pigs. Six light pigs (initial body weight [BW] $32.5{\pm}2.1kg$) and six heavy pigs (initial BW $59.4{\pm}3.2kg$) were surgically prepared with a T-cannula in the distal ileum. A difference method was used to calculate the nutrient and energy digestibility of wheat bran by means of comparison with a basal diet consisting of corn-soybean meal (0% wheat bran). Two additional diets were formulated by replacing 9.65% and 48.25% wheat bran by the basal diet, respectively. Each group of pigs was allotted to a $6{\times}3$ Youden square design, and pigs were fed to three experimental diets during three 11-d periods. Hindgut fermentation values were calculated as the differences between ATTD and AID values. For the wheat bran diets, the AID and ATTD of dry matter (DM), ash, organic matter (OM), carbohydrates (CHO), gross energy (GE), and digestible energy (DE) decreased with increasing inclusion levels of wheat bran (p<0.05). While only AID of CHO and ATTD of DM, ash, OM, CHO, GE, and DE content differed (p<0.05) when considering the BW effect. For the wheat bran ingredient, there was a wider variation effect (p<0.01) on the nutrient and energy digestibility of wheat bran in 9.65% inclusion level due to the coefficient of variation (CV) of the nutrient and energy digestibility being higher at 9.65% compared to 48.25% inclusion level of wheat bran. Digestible energy content of wheat bran at 48.25% inclusion level (4.8 and 6.7 MJ/kg of DM, respectively) fermented by hindgut was significantly higher (p<0.05) than that in 9.65% wheat bran inclusion level (2.56 and 2.12 MJ/kg of DM, respectively), which was also affected (p<0.05) by two growth stages. This increase in hindgut fermentation caused the difference in ileal DE (p<0.05) to disappear at total tract level. All in all, increasing wheat bran levels in diets negatively influences the digestibility of some nutrients in pigs, while it positively affects the DE fermentation in the hindgut.

Effect of Inclusion of Hard Versus Soft Wheat Bran with Different Particle Size on Diet Digestibility, Growth Performance and Carcass Traits of Fattening Rabbits

  • Laudadio, V.;Dario, M.;Addonizio, F.;Tufarelli, Vincenzo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1377-1385
    • /
    • 2009
  • Effect of inclusion of hard vs. soft wheat bran with different particle size on diet digestibility, growth performance and some slaughter traits was evaluated in fattening rabbits. Four isonitrogenous and isocaloric diets were used according to the origin of wheat bran (hard (HWB) - Triticum durum - and soft (SWB) - Triticum aestivum) combined with wheat bran particle size sieved by 2 mm (fine: 2) or by 8 mm (coarse: 8) in a bifactorial (2${\times}$2) study. A growth trial was conducted to measure the effect of treatments on performance in one hundred and twenty New Zealand White${\times}$Californian rabbits fed experimental diets from 50 to 87 days of age. Faecal apparent digestibility was determined within the last week in twenty animals per diet. Digestibility of nutrients was higher (p<0.05) in the diet containing HWB2, except for crude protein, ether extract and ash, than fine and coarse soft wheat bran diets. Final live weight, feed intake and feed consumption of rabbits on the diet with fine hard wheat bran were higher and resulted in greater daily weight gains (p<0.01) than for animals on the other diets. The slaughter yield and percentage value of organs were not significantly (p>0.05) affected by the diets fed; however, the diet containing fine hard wheat bran led to lower (p<0.05) percentages of skin, abdominal fat and carcass drip loss than the other dietary treatments. It is concluded that fine hard wheat bran can be better included in the diet than soft wheat bran to maximize growth performance without affecting carcass traits of fattening rabbits.

Interaction of Dietary Wheat Bran and Dietary Calcium Levels ell Calcium Utilization and Bone Mass in Post-breeding Female Rats

  • Park, Young-Sook
    • Nutritional Sciences
    • /
    • v.1 no.1
    • /
    • pp.16-21
    • /
    • 1998
  • This study was conducted to determine the interaction of dietary wheat bran and dietary calcium levels n)n calcium utilization in post-breeding female rats. It was designed to compare the effects of four different levels (2.5, 5, 10 and 20%) of wheat bran and two different levels (0.5 and 1%) of calcium on bone and calcium balance in post-breeding female rats over a ten-week period. The effects of diet on animal weight gain, serum calcium, femur weight, femur calcium concentration, bone mass and calcium balance were determined and statistically analyzed. The addition of 20% wheat bran significantly (p$\leq$0.05) decreased the weight gain of rats. Serum calcium and bone calcium contents were more affected by dietary calcium level than by dietary wheat bran level. There was no significant difference in fat-free solid, ash, percentage of ash to fat-free solid and percentage of calcium to ash among groups. Groups fed the 1% calcium diet had a higher percentage of calcium to fat-free solid. All rats were in positive calcium balance during the three-4ay experimental period. The average calcium balance of the rats fed 1% calcium diet ranged from 25.34 to 53.90mg and the average calcium balance of the rats fed the 0.5% calcium diet ranged from 26.71 to 32.90mg. In rats receiving 2.5% wheat bran, the difference in calcium balance between the group fed the 1% calcium diet and the group fed the 0.5% calcium diet was only 1.37mg, which was not significantly (p$\leq$0.05) different. In rats receiving 20% wheat bran, the difference in calcium balance between the group fed the 1% calcium diet and the group fed the 0.5% calcium diet was 19.S7mg, which was significantly (p$\leq$0.05) different. The addition of wheat bran caused an increase in the calcium balance of the rats adminslesed the 1% calcium diet. On the other hand, the addition of wheat bran had no effect on the calcium balance of the rats adminislesed the 0.5% calcium diet. In conclusion, calcium utilization of rats wire more positively affected by the interaction of both dietary wheat bran levels and dietary calcium levels than either dietary wheat bran levels or dietary calcium levels alone. Moderate wheat bran consumption did not interfere with the calcium metabolism of rats when calcium intake was high enough.

  • PDF