• Title/Summary/Keyword: Wheel plate

Search Result 108, Processing Time 0.033 seconds

Control of Conductive Plate Through Varying the Open Area Size of the Partially, Magnetically Isolated Electrodyamic Wheel (부분 차폐된 동전기 휠의 개방 영역 크기 조절을 통한 전도성 평판의 제어)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • Shielding the air-gap magnetic field of the electrodynamic wheel below a conductive plate and opening the shielding plate partially, a thrust force and a normal force generate on the conductive plate at the open area. But, as only the variable controlling both forces is a rotating speed of the electrodynamic wheel, it is very difficult to control the forces independently by the speed. So, we discuss a novel method controlling the forces effectively through manipulating a size of the open area. The independent control is made possible by virtue of the feature that the relative ratio between both forces is irrelevant to an air-gap length and determined uniquely for a specific rotating speed of the wheel. Therefore, the rotating speed and the size of open area become new control variables. The feasibility of the method is verified experimentally. Specially, the controllable magnetic forces are used in a noncontact conveyance of the conductive plate.

A Study on the Shape Design and Stress Analysis of Wheel Plate for Rolling Stock (2) (철도차량용 휠 플레이트의 응력해석 및 형상설계에 관한 연구(2))

  • 성기득;양원호;조명래;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • The mechanical stress due to the wheel-rail contact and thermal stress due to the drag braking increase the incidence of wheel failure. So, firstly, stress analyses(mechanical, thermal and combined stress) of wheel plate are performed using 3-dimensional finite element method(FEM). Secondly, the optimum design of wheel plate ;s investigated in order to reduce weight of the wheel based on results of stress analysis. The optimum design is peformed using 2-dimensional axisymmetric F.E. model and its results are verified by 3-dimensional F. E. model.

  • PDF

A Study on the Shape Design and Stress Analysis of Wheel Plate for Rolling Stock (2) (철도차량용 휠 플레이트의 응력해석 및 형상설계에 관한 연구 (2))

  • Sung, Ki-Deug;Yang, Won-Ho;Cho, Myoung-Rae;Chung, Ki-Hyun;Kim, Cheol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.351-356
    • /
    • 2000
  • The mechanical stress due to the wheel-rail contact and thermal stress due to the drag braking increase the incidence of wheel failure. So, firstly, stress analyses(mechanical, thermal and combined stress) of wheel plate are performed using 3-dimensional finite element method(FEM). Secondly, the optimum design of wheel plate is investigated in order to reduce weight of the wheel based on results of stress analysis. The optimum design is peformed using 2-dimensional axisymmetric F.E. model and its results are verified by 3-dimensional F. E. model.

  • PDF

Novel Methods for Spatial Position Control of a Plate In the Conductive Plate Conveyance System Using Magnet Wheels (자기차륜을 이용한 전도성 평판 이송 시스템에서 평판 위치 제어를 위한 새로운 방법)

  • Jung, Kwang Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1010-1017
    • /
    • 2013
  • Two-axial electrodynamic forces generated on a conductive plate by a partially shielded magnet wheel are strongly coupled through the rotational speed of the wheel. To control the spatial position of the plate using magnet wheels, the forces should be handled independently. Thus, three methods are proposed in this paper. First, considering that a relative ratio between two forces is independent of the length of the air-gap from the top of the wheel, it is possible to indirectly control the in-plane position of the plate using only the normal forces. In doing so, the control inputs for in-plane motion are converted into the target positions for out-of-plane motion. Second, the tangential direction of the open area of the shield plate and the rotational speed of the wheel become the new control variables. Third, the absolute magnitude of the open area is varied, instead of rotating the open area. The forces are determined simply by using a linear controller, and the relative ratio between the forces creates a unique wheel speed. The above methods were verified experimentally.

Wear Resistant Steel Plate for Heavy Duty Vehicle (건설 중장비에 적용가능한 내마모 강판)

  • 김기열;이범주;조정환;류영석;이동욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.271-276
    • /
    • 1998
  • To apply the wear resistant steel plate for heavy duty vehicle, the wear characterisms of various kinds of commercial steel plates were invesigated by dry sand/rubber wheel tester which was tested under scratch abrasion mode. The wear tested pnaterials were boron steels which were manufactured by thereto machanical control process (TMCP) in order to achieve higher hardness. As the result of the test, wear resistance of steel plate increases with the hardness and carbon content. The wear loss of wear resistance steel plate (Hv440) is a half times than tinat of SWS490A (Hv160) steel plate in dry sand-rubber wheel test and the result in field test is similar to this dry sand/rubber wheel test result. Therefore, dry sand/rubber wheel tester can be used to predict the scratch abrasion life of the parts for heavy duty vehicle.

  • PDF

Design of a Steering Control Mechanism for a Skateboard on Off-road Driving (비포장 노면 주행을 위한 스케이트보드의 조향제어기구 설계)

  • Sim Hansub
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.110-115
    • /
    • 2005
  • Driving performance is affected by a steering mechanism and characteristics of the ground at off-road skateboarding. In order to drive on off-road, it is necessary off-road wheel and high performance steering mechanism to adapt on various configuration of the ground. In this paper, design factors are studied to affect to steering radius such as inclination angle of a king-bolt, distance of a wheel axle, and rolling angle of a deck plate. A steering system is adhered to inclination face of the deck plate. And, inclination angle is existed between the king-bolt and the flat face of the deck plate. Therefore, the wheel axle of the steering system can be steered by control of the rolling angle of the deck plate.

Multi-axial Force Characteristics of Radial Electrodynamic Wheel (래디알 동전기 휠의 다축력 특성)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • The rotating electrodynamic wheel over a conductive plate produces thrust force as well as normal force. Specially, separating the conductive plate and spacing apart each part, the lateral stability of the rotating wheel is guaranteed due to the restoring force into neutral position. In this paper, the force characteristics of the electrodynamic wheel rotating over the conductive plate is analyzed using the finite element tool. First, the dominant parameters are identified considering the geometric configuration and the operating condition. And the sensitivity for the parameter deviation is quantified for the high force density. The above topology can be applied as an actuating principle for inter-city train as well as contact-free transfer device.

A Study on Stress Distribution of Korean High Speed Train Wheel at Tread Braking (한국형 고속전철의 답면제동에 의한 차륜의 응력분포에 관한 연구)

  • 권범진;정흥채;김호경
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.167-173
    • /
    • 2002
  • The influence of thermal stress at tread breaking in Korean High Speed Train wheel was investigated using the coupled thermal-mechanical analysis technique. The mechanical load or wheel-rail contract load and braking load were considered during FEM analysis. During the stop braking, the effect of mechanical stress on the combined stress is relatively larger than that of thermal stress in the rim of wheel. However, the effect of thermal stress is relatively larger than that of mechanical stress in the plate of wheel. When 300% of the block force was applied, the maximum von Mises stress of 61.0 MPa was found at the outside plate around 400 mm far away from the wheel center.

Omni-Directional Magnet Wheel using Magnetic Shield (자기 차폐를 이용한 전방향 자기차륜)

  • Shim, Ki-Bon;Lee, Sang-Heon;Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.72-80
    • /
    • 2009
  • When the magnet wheel rotates over a conducting plate, it generates the traction torque as well as the repulsive force on the conducting plate. Partially-cut traction torque results in the linear force into the tangential direction. To cut the traction torque, the concept of magnetic shield is introduced. The direction change of the linear force is realized varying the shielded area of magnetic field. That is, the tangential direction of non-shielded open area becomes the direction of the linear thrust force. Specially a shape of permanent magnets composing the magnet wheel leads to various pattern of magnetic forces. So, to enlarge the resulting force density and compensate its servo property a few simulations are performed under various conditions such as repeated pattern, pole number, radial width of permanent magnets, including shape of open area. The theoretical model of the magnet wheel is derived using air-gap field analysis of linear induction motor, compared with test result and the sensitivity analysis for its parameter change is performed using common tool; MAXWELL. Using two-axial wheel set-up, the tracking motion is tested for a copper plate with its normal motion constrained and its result is given. In conclusion, it is estimated that the magnet wheel using partial shield can be applied to a noncontact conveyance of the conducting plate.

Contact-less Conveyance of Conductive Plate by Controlling Permalloy Sheet for Magnetic Shield of Air-gap Magnetic Field from Magnet Wheels (마그네트 휠의 공극 자기장 차폐판 조절에 의한 도전성 평판의 비접촉 반송)

  • Jung, Kwang-Suk;Shim, Ki-Bon;Lee, Sang-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.109-116
    • /
    • 2010
  • The magnet wheel which generates on its interfacing conductive part a repulsive force and a traction torque by rotation of permanent magnets is used to manipulate the conductive plate without mechanical contact. Here, the air-gap magnetic field of the magnet wheel is shielded partially to convert the traction torque into a linear thrust force. Although a magnitude of the thrust force is constant under the fixed open region, we can change the direction of force by varying a position of the shield sheet. So, the spatial position of conductive plate is controlled by not the force magnitude from each magnet wheel but the open position of shield sheet. This paper discusses non-contact conveyance system of the conductive plate using electromagnetic forces from multiple magnet wheels.