• Title/Summary/Keyword: Wheel tracking machine

Search Result 16, Processing Time 0.025 seconds

An Analytical and Experimental Wheel Tracking Study on Dynamic Interaction of Vehicle (차량의 동적 상호작용에 관한 이론연구 및 윤하중 실험)

  • Kim, Nak-Suk;Pak, Suk-Soon
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.39-52
    • /
    • 2006
  • In this paper, an analytical and experimental study was performed in order to determine the effects of interaction between vehicle and structure. Results presented in the paper show that analytical method including moving load effect can investigate the trend of structural response due to dynamic interaction between vehicle and structure. The wheel tracking machine fitted with 2-axle test vehicle can demonstrate more accurate dynamic interaction between vehicle and structure than the wheel tracking machine fitted without 2-axle test vehicle.

  • PDF

A Moving Track Test Using Tire-Wheel Tracking Machine (고무바퀴트랙하중 시험기를 이용한 왕복하중실험)

  • Sung, Ik-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.250-256
    • /
    • 2010
  • In this paper, an analytical and experimental study is performed in order to determine the effects of interaction between vehicle and bridge superstructure. For this purpose an improved wheel tracking machine and an adequate single span bridge are designed. Results presented in the paper show that wheel tracking machine including moving mass effects can demonstrate more accurate dynamic interaction between vehicle and structure.

A Real Vehicle Tracking Acceleration Using A Tire-Wheel-Tracking Machine (제작차륜이동 시험기의 실동주행 가속도측정)

  • Sung, Ikhyun;Seung, Seoungyoul
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.190-197
    • /
    • 2011
  • In this paper, an analytical and experimental study is performed in order to determine the effects of interaction between a vehicle and a structure. For this purpose, a wheel tracking machine and an adequate single span bridge are designed. Results presented in the paper show that the real vehicle tracking accelerations including the interaction between the vehicle and the structure produce additional effects on the dynamic behavior of the structure including reversal and contrary behavior. Also, the interaction between the vehicle and the bridge is reproduced by applying the identified real vehicle tracking accelerations to a general finite element analysis program.

An Application of Wheel-Tracking-Machine on Dynamic Test of Precast Concrete Decks (윤하중 시험기를 이용한 프리캐스트 바닥판의 동적성능시험)

  • Sung, Ik-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.644-650
    • /
    • 2010
  • In this paper, an experimental study is performed in order to determine the effects of interaction between vehicle and structure. For this purpose a wheel tracking machine and an adequate precast concrete deck single span bridge are designed. Results presented in the paper show that interaction between vehicle and structure produce additional effects on dynamic behavior of structure including reversal and contrary behavior.

An Application of Wheel-Tracking-Machine on Moving Mass Test of Precast Concrete Decks (윤하중 실험기를 이용한 프리캐스트 바닥판의 이동질량실험)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.198-205
    • /
    • 2011
  • In this paper, an experimental study is performed in order to determine the effects of interaction between vehicle and structure. For this purpose a wheel tracking machine and an adequate precast concrete deck single span bridge are designed. Results presented in the paper show that interaction between vehicle and structure produce additional effects on dynamic behavior of structure including reversal and contrary behavior.

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF

Intelligent Control of Mobile Robot Based-on Neural Network (뉴럴네트워크를 이용한 이동로봇의 지능제어)

  • 김홍래;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.207-212
    • /
    • 2004
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Development of a Spray-Injection Patching System and a Field Performance Evaluation of 100% RAP Asphalt Mixtures using a Rapid-Setting Polymer-Modified Asphalt Emulsion (아스팔트 긴급보수용 스프레이 패칭 장비 개발 및 현장 적용성 평가)

  • Han, Soo Hyun;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • PURPOSES : The purpose of this study was to develop an urgent road-repair system and perform a field applicability test, as well as discover the optimum mix design for machine applications compared to the optimum mix design for lab applications. METHODS : According to reviews of the patent and developed equipment, self-propelled and mix-in-place equipment types are suitable for urgent pavement repair, e.g., potholes and cracks. The machine-application mix design was revised based on the optimum lab-test mix design, and the field application of a spray-injection system was performed on the job site. The mixture from the machine application and lab application was subjected to a wet-track abrasion test and a wheel-tracking test to calibrate the machine application. RESULTS and CONCLUSIONS : This study showed that the binder content could differ for the lab application and the machine application in the same setting. Based on the wet-track abrasion test result, the binder contents of the machine application exceeded the binder contents of the lab application by 1-1.5% on the same setting value. Moreover, the maximum dynamic stability value for the machine application showed 1% lower binder contents than the maximum lab-application value. Collectively, the results of the two different tests showed that the different sizes and operating methods of the machine and lab applications could affect the mix designs. Further studies will be performed to verify the bonding strength and monitor the field application.

Orientation Control of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자세 제어)

  • 김종수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.82-87
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF