• Title/Summary/Keyword: Wheelset

Search Result 104, Processing Time 0.026 seconds

Creative Design of Cap for Wheel and Axle of Railway Vehicle by Using TRIZ/CAE (TRIZ/CAE를 활용한 철도차량 윤축용 캡의 창의적 설계)

  • Huh, Yong-Jeong;Kim, Jae-Min;Hong, Sung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2581-2587
    • /
    • 2013
  • This paper aims at the design of wheel and axle with cap. The cap is conceptually designed by using TRIZ/CAE. Wheel axle is used at railway vehicle to safety and it is always investigated to reduce the railway vehicle weight. The cap has hollow shaft with the material of SM45C. Cap is located in the bearing seat of wheel and axle. The cap becomes durable within the allowable stress of EN13103, 13104 standard. In this study, the strength of wheel and axle with cap becomes higher than that of hollow shaft. The weight of wheel and axle with cap becomes lower by about 6.75 percent than that of solid shaft. The confidence of wheel and axle with cap can be improved by comparing with solid and hollow shafts.

Weight Reduction of an Urban Railway Axle Based on EN Standard (EN 규격에 기반한 도시철도차량 차축의 경량화)

  • Han, Soon-Woo;Son, Seung-Wan;Jung, Hyun-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.579-590
    • /
    • 2012
  • Weight reduction of a railway axle, which is one of heaviest parts in an urban railway vehicle, is discussed in this paper. A wheelset of a railway vehicle is very important with regard to railway safety, and its structural strength should always be considered when attempting to reduce the railway axle weight. In this work, the weight of the axles of a trailer bogie and a motor bogie of the Korean EMU was reduced by replacing solid axles with hollow axles. On the basis of the EN standard for railway axle design, the strength of existing solid axles was analyzed and the required bore size of a hollow axle was determined. It is shown that the weight of the concurrent axle of the Korean EMU can be reduced by up to 20% with a very small decrease in the structural strength. Finite element analyses were also carried out to verify the design result for lightweight hollow axles.

Optimisation of Rolling Stock Wheelset Life through Better Understanding of Wheel Tyre Degradation

  • Vermeij, I.;Bontekoe, T.;Liefting, G.;Peen, J.
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.83-88
    • /
    • 2008
  • Since the 1990's the fleet of the Dutch Railways showed a dramatic decrease in wheel tyre life. This lifetime reduction led to an unacceptable increase in life cycle costs. Therefore Lloyd's Register Rail has proposed to NedTrain to investigate the possibilities of improving the wheel tyre life. Three improvements were determined as most promising and relatively easy to achieve: - Profile optimisation for Rolling Contact Fatigue (RCF) reduction - a new wheel profile has been developed with a better resistance against rolling contact fatigue of the wheel tread. The profile has been implemented on single deck intercity trains and shows an increase in wheel tyre life of 30%. - Selection of improved wheel tyre materials - combining information from literature and experiences of manufacturers five alternative wheel tyre materials have been selected and are now being tested in practice. - Optimisation of the maintenance strategy - an alternative, preventative maintenance regime has been developed. With this Scraping regime, during short term maintenance every wheel is reprofiled. Higher mileages are reached and savings on life cycle costs up to 50% and more have been achieved. Unplanned maintenance goes down with $30{\sim}60%$. The results from field tests, using a reference group for comparison, and preliminary results after implementation show that the increase in wheel tyre life that is achieved with this project is significant. The results will continue to be monitored using the asset management tool 'Wheel Watch', that was specially developed for this project and is also described in this paper.

  • PDF

A Study on Design Optimization of an Axle Spring for Multi-axis Stiffness (다중 축 강성을 위한 축상 스프링 최적설계 연구)

  • Hwang, In-Kyeong;Hur, Hyun-Moo;Kim, Myeong-Jun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2017
  • The primary suspension system of a railway vehicle restrains the wheelset and the bogie, which greatly affects the dynamic characteristics of the vehicle depending on the stiffness in each direction. In order to improve the dynamic characteristics, different stiffness in each direction is required. However, designing different stiffness in each direction is difficult in the case of a general suspension device. To address this, in this paper, an optimization technique is applied to design different stiffness in each direction by using a conical rubber spring. The optimization is performed by using target and analysis RMS values. Lastly, the final model is proposed by complementing the shape of the weak part of the model. An actual model is developed and the reliability of the optimization model is proved on the basis of a deviation average of about 7.7% compared to the target stiffness through a static load test. In addition, the stiffness value is applied to a multibody dynamics model to analyze the stability and curve performance. The critical speed of the improved model was 190km/h, which was faster than the maximum speed of 110km/h. In addition, the steering performance is improved by 34% compared with the conventional model.