• 제목/요약/키워드: Wheelset dynamic analysis

검색결과 28건 처리시간 0.028초

일반적인 접촉특성을 이용한 휠/레일 접촉모듈 프로그램 개발에 관한 연구 (A study on the development of wheel-rail contact module using general contact mechanism)

  • 박찬경;배대성;조희재;조영걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(I)
    • /
    • pp.204-209
    • /
    • 2003
  • The railway vehicle is composed of many suspension components, such as 1st springs, 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes and its contact mechanism affect the dynamic behavior of high speed train. but these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement and it do not exact dynamic analysis for high speed train. there is a need to develop a new wheel/rail contact module for dynamic behavior and wheelset model is divided motor box, wheel box and wheel body. This wheel is moved by motor box and constrained by joint. It is almost same a train and its result is more exactly.

  • PDF

궤간 가변 윤축의 잠금부품들에 대한 구조해석 (Structural Analysis of Locking Parts in the Gauge -Adjustable Wheelset)

  • 김철수;장천수;장승호;김정규
    • 한국철도학회논문집
    • /
    • 제11권1호
    • /
    • pp.33-38
    • /
    • 2008
  • 이종궤간(협궤/표준궤/광궤)이 존재하는 유라시아 철도네트워크(TCR 및 TSR 등)의 운송시간 및 비용을 절감하기 위하여, 이 구간을 자유롭게 운행할 수 있는 궤간 가변 장치의 개발이 중요하다. 따라서 궤간가변차량의 안전성을 확보하기 위하여 각 시스템 및 부품들의 구조해석을 통한 건전성을 평가하는 것이 필요하다. 본 연구에서는 개발중인 궤간가변 윤축시스템의 안정성 검토의 연구의 일환으로서, 궤간 변환구간 및 곡선부 주행시 차륜의 횡압하에 잠금부품들 사이의 접촉응력을 유한요소해석 시뮬레이터를 이용하여 평가하였다.

3차원 휠-레일 접촉해석을 이용한 철도차량 동역학 해석 (Railway vehicle dynamic analysis using an 3-dimensional wheel-rail contact analysis)

  • 강주석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.18-24
    • /
    • 2010
  • 철도차량의 동특성 해석을 위한 기존의 연구는 대부분 2차원 접촉해석에 근거한 근사해법에 의존해 왔다. 최근에 휠-접촉해석에 대한 정확한 해를 구하기 위해 3차원적 접근방법이 제시되고 있지만, 계산시간의 과다로 인해 실제 시뮬레이션 적용에는 효과적이지 못했다. 본 연구의 주요 관점은 효율적인 3차원 휠-레일 접촉 해석을 통해 휠-레일 접촉력을 계산하여 철도차량의 동특성 해석의 새로운 방법을 제시하고자 하는 것이다. 이를 통해, 3차원 휠-레일 접촉해석 및 휠셋의 동적 계산식이 제시된다.

  • PDF

철도차량 1차현가 특성에 따른 윤축 조향각 성능 분석 (Wheelset Steering Angle of Railway Vehicle according to Primary Suspension Property)

  • 허현무;안다훈;박준혁
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.597-602
    • /
    • 2015
  • In this paper, we studied the steering performance of wheelset with primary suspension characteristics of railway vehicle. We carry out dynamic analysis and experimental study for the vehicle models which are different primary suspension characteristics. The steering angle of a vehicle model (Case 1) operating in domestic subway lines is insufficient compared with an objective steering angle for curved track. And the steering angle of a vehicle model (Case 2) with improved self-steering performance of wheelset is a little improved compare to previous vehicle model. But also Case 2 model is still insufficient compared with an objective steering angle and has its limit in steering performance. So to overcome this limit of steering performance of passive type railway vehicle, an active steering technology is being developed. In case of vehicle model with active steering system, the steering performance is improved remarkably compared to passive type vehicle model.

Estimation of longitudinal velocity noise for rail wheelset adhesion and error level

  • Soomro, Zulfiqar Ali
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권3호
    • /
    • pp.261-270
    • /
    • 2016
  • The longitudinal velocity (forward speed) having significant importance in proper running of railway wheelset on track, depends greatly upon the adhesion ratio and creep analysis by implementation of suitable dynamic system on contamination. The wet track condition causes slip and slide of vehicle on railway tracking, whereas high speed may also increase slip and skidding to severe wear and deterioration of mechanical parts. The basic aim of this research is to design appropriate model aimed estimator that can be used to control railway vehicle forward velocity to avoid slip. For the filtration of disturbance procured during running of vehicle, the kalman filter is applied to estimate the actual signal on preferered samples of creep co-efficient for observing the applied attitude of noise. Thus error level is detected on higher and lower co-efficient of creep to analyze adhesion to avoid slip and sliding. The skidding is usually occurred due to higher forward speed owing to procured disturbance. This paper guides to minimize the noise and error based upon creep coefficient.

휠-레일 접촉 알고리즘 개발 및 동역학 해석 (Developement of the Wheel-Rail Contact Algorithm and Dynamic Analysis)

  • 조재익;박태원;윤지원;김지영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.963-969
    • /
    • 2010
  • The railway vehicle consists of wires, bodies, bogies and wheelsets, and each part has very complex mechanism. In this paper, wheel-rail contact algorithm is implemented using C++ and inserted into the ODYN which is a dynamic analysis program. To analyze wheel-rail contact mechanism, information such as contact points, contact angle and rolling radius is calculated according to the wheel and rail profile. Using this information, a table for the calculation of the wheel-rail contact analysis is made according to the lateral displacement. And, the creepage and normal force are calculated and a creep force is estimated by the FASTSIM. To verify the reliability of the wheel-rail contact algorithm, results of the program are compared with the ADAMS/Rail and paper. Finally, a wheelset of the railway vehicle is modeled using ODYN and simulated static and dynamic analysis. And, to verify the reliability of the simulation results, a displacement, velocity, acceleration and force are compared with results of ADAMS/Rail.

  • PDF

시간-주파수 변환을 이용한 고속철도차량의 동특성 분석 (Analysis of Dynamic Characteristics of High Speed Trains Using a Time Varying Frequency Transform)

  • 이준석;최성훈;김상수;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.841-848
    • /
    • 2008
  • This paper examined dynamic characteristics of high speed trains using a time varying frequency transform. Fourier transform based methods are frequently used for the calculation of the dynamic characteristics of trains in the frequency domain, but they cannot represent the time-varying characteristics. Therefore it is necessary to examine their characteristics using a time-varying frequency transform. For the examination, the non-stationary vibration of wheelset, bogie, and carbody are measured using accelerometers and stored in a data aquisition system. They are processed with localization of the data by modulating with a window function, and Fourier transform is taken to each localized data, called the short-time Fourier transform. From the processed results, time varying auto-spectral density, cross-spectral density, frequency response, and coherence functions have been calculated. From the analysis, it is confirmed that the time varying frequency transform is a useful method for analyzing the dynamic characteristics of high speed trains.

  • PDF

Dynamic response of railway bridges traversed simultaneously by opposing moving trains

  • Rezvani, Mohammad Ali;Vesali, Farzad;Eghbali, Atefeh
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.713-734
    • /
    • 2013
  • Bridges are vital components of the railroads. High speed of travel, the periodic and oscillatory nature of the loads and the comparable vehicle bridge weight ratio distinguish the railway bridges from the road bridges. The close proximity between estimations by some numerical methods and the measured data for the bridge-vehicle dynamic response under the moving load conditions has boosted the confidence in the numerical analyses. However, there is hardly any report regarding the responses of the railway bridges under the effect of the trains entering from the opposite directions while running at unequal speed and having dissimilar geometries. It is the purpose of this article to present an analytical method for the dynamic analysis of the railway bridges under the influence of two opposing series of moving loads. The bridge structural damping and many modes of vibrations are included. The concept of modal superposition is used to solve for the system motion equations. The method of solution is indeed a computer assisted analytical solution. It solves for the system motion equations and gives output in terms of the bridge deflection. Some case studies are also considered for the validation of the proposed method. Furthermore, the effects of varying some parameters such as the distance between the bogies, and the bogie wheelset distance are studied. Also, the conditions of resonance and cancellation in the dynamic response for a variety of vehicle-bridge specifications are investigated.

휠-레일 2점 접촉 해석 알고리즘 개발에 관한 연구 (A development of the 2-point Whee-Rail Contact Algorithm)

  • 정기범;박태원;박재흥;정남호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1888-1893
    • /
    • 2011
  • Considering the dynamic performance and stability of railroad vehicles has begun to grab the attention because of developing the high speed train recently. A development based on an analysis of dynamics and verification has to be required to study the stability of vehicle performance. Several ways of analysis were using the look-up table to apply the wheel-rail contact characteristics quickly, whereas there is a constraint of the wheelset lateral displacement. In this study, an development of searching the wheel-rail contact position has been provided. The 2-point contact between wheel and rail during the driving condition can be calculated by numerical analysis. Moreover, a reliability is verified by comparing the result with a commercial program.

  • PDF

철도차량의 비선형 안정성에 영향을 미치는 인자 연구 (A Study on the Factors Influencing the Non-Linear Stability of Railway Vehicles)

  • 정우진;신정렬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.513-518
    • /
    • 2001
  • This research has been performed to estimate the hunting motion hysteresis of railway passenger cars. An old and a new car with almost same structure are chosen as analysis models. To solve effectively a set of simultaneous equations of motion strongly coupled with creep relations, shooting algorithm in which the nonlinear relations are regarded as a two-point boundary value problem is adopted. The bifurcation theory is applied to the dynamic analysis to distinguish differences between linear and nonlinear critical speeds by variation of parameters. It is found that there are some factors and their operation area to make nonlinear critical speed respond to them more sensitivity than linear critical speed. Full-scale roller rig tests are carried out for the validation of the numerical results. Finally, it is concluded that the wear of wheel profile and the stiffness discontinuities of wheelset suspension caused by deterioration have to be considered in the analysis to predict hysteresis of critical speed precisely.

  • PDF