• Title/Summary/Keyword: Whiffle Tree

Search Result 8, Processing Time 0.023 seconds

Experimental Study on Nonlinear Behaviors of A 1:12 Scale 10-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 1:12축소 10층 R.C.골조의 비선형 거동에 관한 실험 연구)

  • Lee, Han-Seon;Kang, Kyi-Yong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.255-266
    • /
    • 1999
  • The objective of this experiment is to observe the elastic and inelastic behaviors of high-rise reinforced concrete frames having non-seismic details. To do this, a building frame designed according to Korean seismic code and detailed in the Korean conventional practice was selected. A 1:12 scale plane frame model was manufactured according to similitude law. A reversed lateral load test and a monotonic pushover test were performed under the displacement control. To simulate the earthquake effects, the lateral force distribution was maintained to be an inverse triangle by using a whiffle tree. From the tests, base shears, crack pattern, local rotations in the ends of critical members and the relations between interstory drift versus story shear are obtained. Based on test results, conclusions are drawn on the implications of the elastic and inelastic behaviors of a high-rise reinforced concrete frame having non-seismic details.

Lateral Load Tests of A 10-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 10층 철근 콘크리트 골조의 횡방향 가력 실험)

  • 이한선;강귀용;김정우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.525-530
    • /
    • 1998
  • The objective of this experiment is to observe the elastic and inelastic behaviors of high-rise reinforced concrete frames with nonseimic details. To do this, a building frame designed according to Korean seismic code and detailed in the Korean conventional manner was selected. An 1:12 scale plane frame model was manufactured according law. Reversed lateral load tests and monotonic push-over test were performed under the displacement control. To simulate the earthquake effect, the lateral force distribution was maintained to be an inversed triangular by using whiffle tree. From the tests, story displacements, lateral story forces, local plastic rotations and the relations between inter-story drift versus story shear are obtained. Based on the test results, conclusions on the characteristics of the elastic and behaviors of a high-rise reinforced concrete frame with nonseismic details are drawn.

  • PDF

Evaluation of Structural Test for Bottom End Piece Used for Nuclear Power Reactor (원자로용 하단고정체에 대한 구조시험 평가)

  • 김재훈;사정우;김덕회;손동성;임정식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.3-11
    • /
    • 1999
  • The atomic fuel rods between top and bottom end pieces of reactor need to be extended for high combustion rate of future-type fuel to increase the irradiation in the axial direction. For allowing axial extension of the fuel rods, the space between top and bottom end pieces should be expanded. Thus the thickness reduction of the flow plate is necessary. This study was carried out the mechanical strength test by using strain gages as a function of flow plate thickness, the existence of skirt and loading condition for the Korean Fuel Assembly(KOFA). The experimental apparatus was designed for load conditions, uniformly distributed load and displacement. Test method using whiffle tree of uniformly distributed load has been comparatively conservative. The test results were compared with those of finite element analysis and the test method on bottom end piece was established.

  • PDF

Push-Over Test of A 10-Story Reinforced Concrete Masonry Infilled Frame with Nonseismic Details (비내진 상세를 가진 10층 철근 콘크리트 조적채움 골조의 일방향 가력 실험)

  • 이한선;김정우;김상호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.513-518
    • /
    • 1999
  • The objective of this experiment is to observe the elastic and inelastic behaviors of high-rise reinforced concrete frame with infilled masonry. To do this a building frame designed according to Korean seismic code and detailed in the Korean conventional manner was selected. An 1:12 scale plane masonry-infilled frame model was manufactured according to similitude law. Push-over test were performed under the roof displacement control. To simulate the earthquake effect, the lateral force distribution was maintained to be an inversed triangular by using whiffle tree. From the tests, story displacements, lateral story forces, local plastic rotations and the relations between inter-story drift versus story shear are obtained. Based on the test results, conclusions on the characteristics of the elastic and inelastic behaviors of a high-rise reinforced concrete frame with infilled masonry are drawn.

  • PDF

Pushover Tests of 1 : 5 Scale 3-Story Reinforced Concrete Frames (1 : 5 축소 3층 철근콘크리트 골조의 횡방향 가력실험)

  • 이한선;우성우;허윤섭;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.529-536
    • /
    • 1999
  • The objective of the research stated herein is to observe th elastic and inelastic behaviors and ultimate capacity of 1 : 5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames without and with infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained to be an inverted triangle by using the whiffle tree. From the results of tests, the relations between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry are investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry are compared.

  • PDF

Structural Test and Safety Evaluation for Fin Assembly of Scientific Sound Rocket (과학로케트 날개조립체의 구조강도시험 및 안전성 평가)

  • 허용학;김갑순;주진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3395-3403
    • /
    • 1994
  • The structural test technique and equipment for strength test of astronautical structures, such as rocket, were presented in this paper. Structural strength tests of the fin assembly with fin and fin frame in the scientific sound rocket were performed with load levels of 100% limit load and 150% ultimate load of design lift force. Safety factors in each part of the fin assembly were calculated at these two load levels and the stiffnesses based on the measured deflection of fin assembly and strains on fin and fin frame were evaluated at these two load level. As the result of structural test, the fin assembly was estimated to be safe.

Pushover Tests of 1:5 Scale 3-Story Reinforced Concrete Frames

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup;Seon, Jin-Gyu
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.165-174
    • /
    • 1999
  • The objective of the research stated herein is to observe the elastic and inelastic behaviors and ultimate capacity of 1:5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames with and without infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained by an inverted triang1e by using the whiffle tree. From the test results, the relation ships between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry were investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry were compared.

  • PDF

Transformation of Flight Load to Test Load for the Static Load Test of External Fuel Tank for Aircraft (항공기용 외부연료탱크 정하중시험을 위한 비행하중의 시험하중으로의 변환)

  • Kim, Hyun-gi;Kim, Sung Chan;Park, Sung Hwan;Ha, Byoung Geun;An, Su Hong;Kim, Jun Tae
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.80-85
    • /
    • 2021
  • In this study, for conducting a static load test of an external fuel tank used for an aircraft, the flight load acting on the external fuel tank was converted to the test load and the suitability of the converted test loads was confirmed. In order to calculate the test load from the flight load, the external fuel tank was divided into several sections. Shear load, moment by unit shear load, and unit moment were calculated for each section. Test loads for each section were then calculated by computing the shear load, the moment of each section, and flight load condition. In actual static load tests, it might not be possible to impose the test load in the calculated position due to physical constraints. Therefore, after determining positions in which the load could be imposed in the actual test, the test load calculated for each section was redistributed to selected positions. Finally, a test load plan was established by applying a whiffle tree to enhance the efficiency of the test performance while making it easier to operate the actuator. The reliability of the test load plan was verified by comparing it with flight load conditions.