• Title/Summary/Keyword: Whole blood

Search Result 986, Processing Time 0.03 seconds

Hemorheology and Cardiovascular Disease

  • Cho, Young-I.;Kensey, Kenneth R.
    • 순환기질환의공학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.3-18
    • /
    • 2002
  • Hemorheology plays an important role in atherosclerosis. Hemorheologic properties of blood include whole blood viscosity, plasma viscosity, hemaocrit, RBC deformability and aggregation, and fibrinogen concentration in plasma. Blood flow is determine by three parameters (pressure, lumen diameter, and whole blood viscosity), whole blood viscosity is one of the key physiological variables. However, the significance of whole blood viscosity has not yet not been fully appreciated. Whole blood viscosity has a unique property, non-Newtonian shear-thinning characteristics, which is primarily due to the presence of RBCs. Hence, RBC deformability and aggregation directly affect the magnitude of blood viscosity, and any factors or diseases affecting RBC characteristics influence blood viscosity. Therefore, on can see that whole blood viscosity is the causal mechanism by which traditional risk factors such as hypertension, hyperlipidemia, smoking, exercise, obesity, age, and gender are related to atherogenesis. In this regard, we included whole blood viscosity in the three key determinants of injurious pulsatile flow that results in mechanical injury and protective adaptation in the arterial system. Because whole blood viscosity is a potential predictor of cardiovascular diseases, it should be measured in routine cardiovascular profiles. Incorporating whole blood viscosity measurements into a standard clinical protocol could improve our ability to identify patients at risk for cardiovascular disease and its complications.

  • PDF

Microsystems for Whole Blood Purification and Electrophysiological Analysis

  • Han, Arum;Han, Ki-Ho;Mohanty Swomitra K.;Frazier A. Bruno
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents the development of a microsystem for whole blood purification and electrophysiological analysis of the purified cells. Magnetophoresis using continuous diamagnetic capture (DMC) was utilized for whole cell purification and electrical impedance spectroscopy (EIS) was utilized for electrophysiological analysis of the purified cells. The system was developed on silicon and plastic substrates utilizing conventional microfabrication technologies and plastic microfabrication technologies. Using the magnetophoretic microseparator, white blood cells were purified from a sample of whole blood. The experimental results of the DMC microseparator show that 89.7% of the red blood cells (RBCs) and 72.7% of the white blood cells (WBCs) could be continuously separated out from a whole blood using an external magnetic flux of 0.2 T. EIS was used as a downstream whole cell analysis tool to study the electrophysiological characteristics of purified cells. In this work, primary cultured bovine chromaffin cells and human red blood cells were characterized using EIS. Further analysis capabilities of the EIS were demonstrated by successfully obtaining unique impedance signatures for chromaffin cells based on the whole cell ion channel activity.

A study on the determination of lead in whole blood by ICP/MS (ICP/MS에 의한 전혈 중 납의 분석방법 연구)

  • Park, Kyung Su;Kim, Sun Tae
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.240-245
    • /
    • 1997
  • An accurate analysis method for the determination of lead in whole blood by ICP/MS was developed. Whole blood samples were decomposed in microwave digestion system without any contamination and loss of lead. The 96 samples were analyzed by ICP/MS using mass$^{208}$ isotope of lead. Lead concentrations of human whole blood were ranged of $2.50{\sim}22.8{\mu}g/dL$. The accuracy of this analysis method was verified by analyzing of NIST SRM 955a series(lead in blood).

  • PDF

Detecting Potassium Imbalance: Whole Blood vs. Serum (전혈과 혈청에서의 칼륨 이상소견 검사의 차이)

  • Cho, Young-Duck;Choi, Sung-Hyuk;Yoon, Young-Hoon;Park, Sang-Min;Kim, Jung-Youn;Lim, Chae-Seung
    • The Korean Journal of Blood Transfusion
    • /
    • v.23 no.2
    • /
    • pp.162-168
    • /
    • 2012
  • Background: Potassium, the most common cation in the intracellular space, plays a critical role in our physiology. Potassium imbalance may cause life-threatening problems, ranging from general weakness to cardiac arrest due to ventricular fibrillation. For emergency physicians, detection of such derangement within a short period of time is of critical importance. In this study, we wanted to determine whether analysis of whole blood samples can be used as a screening tool for potassium imbalance by comparative analysis of whole blood and serum samples. Methods: Two samples were drawn from 227 patients. The whole blood sample was taken from the radial artery and contained in a commercially available arterial blood collection syringe with a lithium-heparin coating. The serum sample was contained in a commercially available vacuum bottle in a non-additive silicone coated tube and transported to the laboratory. The study population was divided into three groups, patients with normal whole blood potassium, patients with decreased whole blood potassium, and patients with elevated whole blood potassium. Potassium levels for each group were coupled with serum potassium levels and compared. Results: No significant difference in potassium values was observed between whole blood and serum samples (P<0.05). Strong associations were observed among the three groups (normal range, hypokalemia, and hyperkalemia group). Compared to the normal group (r=0.851), the hyperkalemia group showed a stronger association between variables (r=0.897), and the hypokalemia group showed a weaker association (r=0.760). Their correlation coefficients were highly significant (P<0.05). Conclusion: Our study illustrates that point-of-care testing using whole blood with whole blood can be a reliable screening tool when treating patients with suspicious potassium abnormality, especially in hyperkalemia patients.

Screening of Anti-Atopic Dermatitis Material by Using NC/Nga Mouse Whole Blood System (NC/Nga 마우스 전혈을 이용한 항 아토피 피부염 물질 탐색)

  • Park, Dong-Hoon;Kim, Youn-Uck
    • IMMUNE NETWORK
    • /
    • v.8 no.3
    • /
    • pp.98-105
    • /
    • 2008
  • Background: Allergic inflammation was induced by activated Th2 lymphocytes, leading to IgE production and eosinophil activation. A Th2 disproportion was shown in atopic children soon after birth. During specific allergen stimulation, an increase of Th2 cells was observed in most cases. In this study, we prepared new screening "whole blood" system for searching the anti-atopic materials. Cytokine production and IgE secretion from whole blood system were assessed and we confirmed the results by using animal system. Methods: Pathological features in NC/Nga mice are similar to those observed in human atopic dermatitis. Whole blood from NC/Nga mouse was stimulated by using TNCB (Th2 activator) or candidate materials of anti-atopic dermatitis, and the production of cytokines (IL-4, IL-12, and IFN-${\gamma}$) were measured by ELISA. In order to confirm the results of whole blood system, in vivo test was done by using NC/Nga mice. Results: In whole blood system, LPS and extracts of green tea, hardy orange and onion induced the production of IL-12 and IFN-${\gamma}$ while they reduced the production of IL-4. Also, LPS and extracts of onion reduced IgE production. Though atopic dermatitis was observed from a mouse stimulated with TNCB, it was not when a mouse was co-stimulated in LPS or extracts of onion. The results are same as those observed in whole blood system. Conclusion: Whole blood system was simple and speedy methods for searching a materials compared with the conventional high-cost animal system. And the results using whole blood system was proved to be reliable in our experiments for screening anti-atopic material. We expect that the system can be applied to other experiments for searching similar materials.

Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer

  • Sehyun Shin;Yunhee Ku;Park, Myung-Su;Suh, Jang-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2004
  • The present study investigated the deformability of red blood cells (RBC) and its effect on whole blood viscosity using a laser-diffraction slit-rheometer (LDSR). The LDSR has been recently developed with significant advances in laser-diffractometry design, operation and data analysis. While shear stress levels in a slit flow are continuously decreasing, both the deformation of red blood cells and the shear stress were simultaneously measured. Additionally, the viscosity of whole blood was measured using the LDSR. The present study found that the whole blood viscosity is strongly dependent on the RBC deformability. The less deformable the RBCs are, the higher the blood viscosity is.

Selection of Reference Genes for Gene Expression Studies in Porcine Whole Blood and Peripheral Blood Mononuclear Cells under Polyinosinic:Polycytidylic Acid Stimulation

  • Wang, Jiying;Wang, Yanping;Wang, Huaizhong;Hao, Xiaojing;Wu, Ying;Guo, Jianfeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.471-478
    • /
    • 2014
  • Investigating gene expression of immune cells of whole blood or peripheral blood mononuclear cells (PBMC) under polyinosinic:polycytidylic acid (poly I:C) stimulation is valuable for understanding the immune response of organism to RNA viruses. Quantitative real-time PCR (qRT-PCR) is a standard method for quantification of gene expression studies. However, the reliability of qRT-PCR data critically depends on proper selection of reference genes. In the study, using two different analysis programs, geNorm and NormFinder, we systematically evaluated the gene expression stability of six candidate reference genes (GAPDH, ACTB, B2M, RPL4, TBP, and PPIA) in samples of whole blood and PBMC with or without poly I:C stimulation. Generally, the six candidate genes performed a similar trend of expression stability in the samples of whole blood and PBMC, but more stably expressed in whole blood than in PBMC. geNorm ranked B2M and PPIA as the best combination for gene expression normalization, while according to NormFinder, TBP was ranked as the most stable reference gene, followed by B2M and PPIA. Comprehensively considering the results from the two programs, we recommended using the geometric mean of the three genes, TBP, PPIA and B2M, to normalize the gene expression of whole blood and PBMC with poly I:C stimulation. Our study is the first detailed survey of the gene expression stability in whole blood and PBMC with or without poly I:C stimulation and should be helpful for investigating the molecular mechanism involved in porcine whole blood and PBMC in response to poly I:C stimulation.

Near-infrared Spectroscopic Measurement of Glucose Under the Existence of Other Major Blood Components (혈액의 주요 구성물질 존재 하에서 근적외분광분석법을 이용한 글루코오스 측정)

  • 백주현;강나루;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.48 no.3
    • /
    • pp.171-176
    • /
    • 2004
  • This study was described for measuring clinically relevant levels of glucose in undiluted plasma and whole blood by near-infrared (NIR) spectroscopy. Result from an initial measurement of major blood components powder was over-lapped the absorption bands of glucose at 1500-1600 nm. However, the NIR data of blood components were clearly separated by principle component analysis (PCA) space. By the use of partial least squares (PLS) regression, glucose concentrations in undiluted plasma and whole blood could be determined with standard errors of prediction (SEP) of 15 mg/dl and 76 mg/dl, respectively. Although these blood components possessed strong absorption bands that overlapped with the absorption bands of glucose, successful calibration models could be carried out.

Evaluation of Rapid Immunochromatographic Assay Kit for HBsAg-Screening Using Whole Blood

  • Shin, Hyeong-Soon;Heo, Tae-Ryeon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.362-365
    • /
    • 2000
  • A rapid immunochromatographic assay kit using whole blood to screen hepatitis B surface antigen was developed and evaluated by using sera from 240 patients. The reference diagnosis was based on the results obtained with GENEDIA Anti-HBs Rapid kit which is very similar to the above kit except for the use of serum. The test demonstrated a good correlation with the reference immunochromatographic assay kit, that is, the sensitivity and the specificity of the kit was 100%, respectively. The rapid test kit using whole blood should be more convenient and useful for the diagnosis of hepatitis B virus because the kit does not need machines and time to prepare serum. In addition, this kit is safe from inadvertent infection during sample treatment because the blood is sterilized with hydrogen peroxide, eliminates the procedure required to prepare serum and reduces the possibility of exposure to infectious agents.

  • PDF

Preparation and analysis of lyophilized whole blood as external quality control materials for Pb and Cd determination by graphite furnace atomic absorption spectrometry (흑연료 원자흡수 분광법에 의한 혈중의 납, 카드뮴 정량을 위한 외부정도관리 시료제조 및 분석)

  • Lee, Kong-Joo;Lim, H.B.
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.273-279
    • /
    • 1995
  • Lyophilized whole blood samples containing various concentrations of Pb and Cd have been prepared as external quality control materials. These materials have been characterized with graphite furnace atomic absorption spectrometry(GFAAS), The optimized conditions for the quantitative determination of Ph and Cd in whole blood using GFAAS were obtained at the ashing temperature of $600{\sim}650^{\circ}C$ with 0.1% ammonium dihydrogen phosphate and 0.1% Triton X-100 as matrix modifier. Homogeniety and stability of the prepared whole blood have been studied at the optimized analytical condition.

  • PDF