• Title/Summary/Keyword: Wide field of view

Search Result 264, Processing Time 0.033 seconds

Ultra Precision Machining Technology Development of Subminiature Optics of Proximity and Wide Field of View (초정밀 가공기를 이용한 근접초소형 광시야각 광학계 기술 개발)

  • Kim, M.S.;Yang, S.C.;Kim, H.S.;Kim, G.H.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-101
    • /
    • 2008
  • Due to improve form accuracy and surface roughness of a aspheric lens core that is made of Ni, the study is carried out on localization about a Subminiature Optics of Proximity and Wide Field of View. The required form accuracy P-V $0.2{\mu}m$ and surface roughness is Ra 10 nm. The design of experiment(DOE) is adopted to find a optimal cutting conditions which are spindle speed, depth of cut, feedrate. Finally, the effects of this study are replacing importation and strengthening competitiveness through the localization of the Subminiature Optics of Proximity and Wide Field of View.

  • PDF

Design of an Optical System for a Space Target Detection Camera

  • Zhang, Liu;Zhang, Jiakun;Lei, Jingwen;Xu, Yutong;Lv, Xueying
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.420-429
    • /
    • 2022
  • In this paper, the details and design process of an optical system for space target detection cameras are introduced. The whole system is divided into three structures. The first structure is a short-focus visible light system for rough detection in a large field of view. The field of view is 2°, the effective focal length is 1,125 mm, and the F-number is 3.83. The second structure is a telephoto visible light system for precise detection in a small field of view. The field of view is 1°, the effective focal length is 2,300 mm, and the F-number is 7.67. The third structure is an infrared light detection system. The field of view is 2°, the effective focal length is 390 mm, and the F-number is 1.3. The visible long-focus narrow field of view and visible short-focus wide field of view are switched through a turning mirror. Design results show that the modulation transfer functions of the three structures of the system are close to the diffraction limit. It can further be seen that the short-focus wide-field-of-view distortion is controlled within 0.1%, the long-focus narrow-field-of-view distortion within 0.5%, and the infrared subsystem distortion within 0.2%. The imaging effect is good and the purpose of the design is achieved.

Design of Infrared Camera for Extended Field of View (시야 확장형 적외선카메라 설계)

  • Lee, Yong-chun;Song, Chun-ho;Kim, Sang-woon;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.699-701
    • /
    • 2017
  • Typical operating method for long-range observation cameras are to detect the target at a wide angle of view and to recognize/identify the target with a telephoto angle of view. And the detection/recognition range performance is an important item to evaluate the performance of the defense infrared camera. To increased the detection range performance, the camera's field of view should be narrowed. Due to the narrow field of view, the probability of finding target is relatively low. In this paper, we propose a method to search for target by providing a wide angle view while maintaining detection range performance. M&S and optimized design were used to develop infrared camera with extended field of view and the results of the test summarized.

  • PDF

Optical Design of a Wide-field Off-axis Two-mirror System without Ray Obstruction (광선의 차폐가 없는 광시야 비축 2반사광학계 설계)

  • Oh, Hye-Jin;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.263-272
    • /
    • 2017
  • To design a wide-field optical system, the inverted telephoto configuration, which has a negative front group and a positive rear group, is popular. For a two-mirror system, the inverse Cassegrain system has the inverted telephoto configuration, but the inverse Cassegrain system with the conventional, axially symmetric configuration shows severe field screening and ray obstruction. To avoid these problems, we put the aperture stop on the secondary mirror of an inverse Cassegrain system to increase field of view, and designed a wide-field off-axis two-mirror system which only uses the off-axis field, without ray obstruction.

Wide Field-of-View Imaging Using a Combined Hyperbolic Mirror

  • Yi, Sooyeong;Ko, Youngjun
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.336-343
    • /
    • 2017
  • A wide field-of-view (FOV) image contains more visual information than a conventional image. This study proposes a new type of hyperbolic mirror for wide FOV image acquisition. The proposed mirror consists of a hyperbolic cylindrical section and a bowl-shaped hyperbolic omnidirectional section. Using an imaging system with this mirror, it is possible to achieve a $213.8^{\circ}$ horizontal and a $126.94^{\circ}$ vertical maximum FOV. Parameters of each section of the mirror are designed to be continuous at the junction of the two parts, and the resultant image is seamless. The image-acquisition model is obtained using ray-tracing optics. To rectify the geometrical distortion of the original image due to the mirror, an image-restoration algorithm based on conformal projection is presented in this study. The performance of the proposed imaging system with the hyperbolic mirror and its image-restoration algorithm are verified by experiments.

Anamorphic Infrared Camera with Wide Field of View and Optomechanical Automatic Athermalization Mechanism (광기구적 자동 비열화가 적용된 비정형 적외선 광각 카메라)

  • Kim, Hyunsook;Ok, Chang Min
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.187-194
    • /
    • 2015
  • A system of infrared camera optics with wide field of view and anamorphic lenses is proposed, and its validity verified through manufacture. The infrared camera produced provides a wide field of view of over 100 degrees in the horizontal direction, and an even greater magnification in the vertical direction. As a result, the system can have a wider surveillance range and improved detection ability at the same time. In addition, a new optomechanical automatic athermalization mechanism is proposed and applied to the infrared camera. Its performance and utility is proved through testing.

An effective indoor video surveillance system based on wide baseline cameras (Wide baseline 카메라 기반의 효과적인 실내공간 감시시스템)

  • Kim, Woong-Chang;Kim, Seung-Kyun;Choi, Kang-A;Jung, June-Young;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.317-323
    • /
    • 2010
  • The video surveillance system is adopted in many places due to its efficiency and constancy in monitoring a specific area over a long period of time. However, many surveillance systems composed of a single static camera often produce unsatisfactory results due to their lack of field of view. In this paper, we present a video surveillance system based on wide baseline stereo cameras to overcome the limitation. We adopt the codebook algorithm and mathematical morphology to robustly model the foreground pixels of the moving object in the scene and calculate the trajectory of the moving object via 3D reconstruction. The experimental results show that the proposed system detects a moving object and generates a top view trajectory successfully to track the location of the object in the world coordinates.

High-Speed SD-OCT for Ultra Wide-field Human Retinal Three Dimensions Imaging using GPU (병렬처리 그래픽 기술 기반의 Spectral Domain-Optical Coherence Tomography를 이용한 3차원 광 대역 망막 촬영)

  • Park, Kibeom;Cho, Nam Hyun;Wijesinghe, Ruchire Eranga Henry;Kim, Jeehyun
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • We have developed an ultra wide-field of view Optical Coherence Tomography(OCT) which has capability to 2D and 3D views of cross-sectional structure of in vivo human retina. Conventional OCT has a limitation in visualizing the entire retina due to a reduced field of view. We designed an optical setup to significantly improve the lateral scanning range to be more than 20 mm. The entire human retinal structure in 2D and 3D was reported in this paper with the developed OCT system. Also, we empirically searched an optimized image size for real time visualization by analyzing variation of the frame rate with different lateral scan points. The size was concluded to be $1024{\times}2000{\times}300$ pixels which took 9 seconds for visualization.

A New Instrument for Measuring the Optical Properties of Wide-field-of-view Virtual-reality Devices

  • Ahn, Hee Kyung;Lim, Hyun Kyoon;Kang, Pilseong
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.392-399
    • /
    • 2022
  • Light-measuring devices (LMDs) are frequently used to measure luminance and color coordinates of displays. However, it is very difficult to use a conventional LMD for measuring the optical properties of virtual-reality (VR) devices with a wide field of view (FOV), because of their confined spaces where the entrance pupil of a LMD is located. In this paper, a new LMD that can measure the optical properties of wide-FOV VR devices, without physical conflict with the goggles of the VR device, is proposed. The LMD is designed to fully satisfy the requirements of IEC 63145-20-10, and a pivot-point correction method for the LMD is applied to improve its accuracy. To show the feasibility of the developed LMD and the correction method, seven VR devices with wide FOV are measured with it. From the results, all of them are successfully measured without any physical conflict, and a comparison to their nominal values shows that the FOVs have been properly measured.