• Title/Summary/Keyword: Wideband Signal Codec

Search Result 12, Processing Time 0.021 seconds

High-Band Codec for Bandwidth Scalable Wideband Speech Codec (대역폭 계층 구조의 광대역 음성 부호화기를 위한 상위 대역 부호화기 연구)

  • Kim Youngvo;Jeong Byounghak;Son Chang-Yong;Sung Ho-Sang;Park Hochong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.395-401
    • /
    • 2005
  • In this paper, the high-band codec for bandwidth scalable wideband speech codec is proposed. The wideband input speech signal is separated into low-band signal and high-band signal, and the low-band signal is encoded by the standard narrow-band speech codec and the high-band signal is encoded by the proposed codec. In the high-band codec. the signal is transformed into frequency domain by MLT on a subframe basis, and MLT coefficients are splitted into magnitude and sign for quantization. The magnitudes of MLT coefficients are arranged into several time-frequency bands and each band is quantized in 2D-DCT domain, where the low-band information is utilized for better performance. The sign of MLT coefficient is quantized based on a priority selection process with the weighting measurement. The objective and subjective performance of wideband speech codec including the proposed high-band codec is measured, and it is confirmed that the proposed codec has better performance than 32kbps G.722.1.

Selective Quantization Based on Band Property for Wideband Signal Codec (광대역 신호 압축기를 위한 주파수 대역 특성에 선택적인 양자화 방법)

  • 송재종;박호종;김무영;김도석;김정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.76-82
    • /
    • 2001
  • In this paper, a novel quantization method for wideband signal codec with 7 kHz bandwidth is proposed. In the transform-based wideband signal codecs, the signal is transformed to frequency domain and the spectral coefficients in each frequency band are quantized based on human perceptual model, followed by Huffman coding. However, the property of each band varies with frequency, and the codec has poor performance when all bands are quantized with the same method. Therefore, a selective quantization method is proposed, which analyzes the band property and selects the quantization domain between frequency domain and time domain based on the quantization efficiency. It is confirmed that the proposed method has better performance than the quantizer of G722.1 codec.

  • PDF

16kbps Windeband Sideband Speech Codec (16kbps 광대역 음성 압축기 개발)

  • 박호종;송재종
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 2002
  • This paper proposes new 16 kbps wideband speech codec with bandwidth of 7 kHz. The proposed codec decomposes the input speech signal into low-band and high-band signals using QMF (Quadrature Mirror Filter), then AMR (Adaptive Multi Rate) speech codec processes the low-band signal and new transform-domain codec based on G.722.1 wideband cosec compresses the high-band signal. The proposed codec allocates different number of bits to each band in an adaptive way according to the property of input signal, which provides better performance than the codec with the fixed bit allocation scheme. In addition, the proposed cosec processes high-band signal using wavelet transform for better performance. The performance of proposed codec is measured in a subjective method. and the simulations with various speech data show that the proposed coders has better performance than G.722 48 kbps SB-ADPCM.

Bandwidth Scalable Wideband Speech Codec (대역폭 계층 구조의 광대역 음성 부호차기 개발)

  • 이우석;손창용;이영범;박호종
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.481-487
    • /
    • 2004
  • In this paper. the structure of bandwidth scalable wideband speech codec and its high-band codec are proposed. In the high-band codec. the signal is divided into frequency bands. and each band is quantized in DCT domain. The DCT coefficients are splitted into magnitude and sign, and each is quantized independently by a specialized method based on its characteristics. In addition. the quantized gain parameter in the low-band codec is utilized in the high-band codec for an enhanced performance. The bandwidth scalable wideband speech codec using G.729E for low-band and the proposed codec for high-band is developed, and it is confirmed that the proposed codec has better subjective performance than 24kbps G.722.1.

Enhancement of Super-wideband Coder by Considering Audio Feature in MDCT Domain (MDCT 도메인에서 오디오 신호 특징을 고려한 초광대역 코덱 개선)

  • Hong, Ki-Bong;Jeong, Gyu-Hyeok;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.129-136
    • /
    • 2011
  • This paper presents the coding method that have multi-mode and efficiency of audio codecs using the feature of audio signal. Recently, the developed extension super-wideband codec based on G.718 wideband divides two mode between Generic and Sinusiodal. So codec efficently encode audio signal exist in super-wideband. But the codec is not as efficent coding for harmonic component of wind instrument and string instrument and individual-Line component of percussion instrument. The proposed method are modeling and encoding multiple pitch and individual-line feature using multi mode coding. For the performance evaluation, we used SNR in MDCT domain for objective test and MUSHRA test for subjective test. As a result, the performance of SNR and MUSHRA test of the proposed method have better performance than the G.718 super-wideband codec.

Real-Time Implementation of the G.729.1 Using ARM926EJ-S Processor Core (ARM926EJ-S 프로세서 코어를 이용한 G.729.1의 실시간 구현)

  • So, Woon-Seob;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.575-582
    • /
    • 2008
  • In this paper we described the process and the results of real-time implementation of G.729.1 wideband speech codec which is standardized in SG15 of ITU-T. To apply the codec on ARM926EJ-S(R) processor core. we transformed some parts of the codec C program including basic operations and arithmetic functions into assembly language to operate the codec in real-time. G.729.1 is the standard wideband speech codec of ITU-T having variable bit rates of $8{\sim}32kbps$ and inputs quantized 16 bits PCM signal per sample at the rate of 8kHz or 16kHz sampling. This codec is interoperable with the G.729 and G.729A and the bandwidth extended wideband($50{\sim}7,000Hz$) version of existing narrowband($300{\sim}3,400Hz$) codec to enhance voice quality. The implemented G.729.1 wideband speech codec has the complexity of 31.2 MCPS for encoder and 22.8 MCPS for decoder and the execution time of the codec takes 11.5ms total on the target with 6.75ms and 4.76ms respectively. Also this codec was tested bit by bit exactly against all set of test vectors provided by ITU-T and passed all the test vectors. Besides the codec operated well on the Internet phone in real-time.

Real-Time Implementation of Wideband Adaptive Multi Rate (AMR-WB) Speech Codec Using TMS32OC6201 (TMS320C6201을 이용한 적응 다중 전송율을 갖는 광대역 음성부호화기의 실시간 구현)

  • Lee, Seung-Won;Bae, Keun-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1337-1344
    • /
    • 2004
  • This paper deals with analysis and real-time Implementation of a wide band adaptive multirate speech codec (AMR-WB) using a fixed-point DSP of TI's TMS320C6201. In the AMR-WB codec, input speech is divided into two frequency bands, lower and upper bands, and processed independently. The lower band signal is encoded based on the ACELP algorithm and the upper band signal is processed using the random excitation with a linear prediction synthesis filter. The implemented AMR-WB system used 218 kbytes of program memory and 92 kbytes of data memory. And its proper operation was confirmed by comparing a decoded speech signal sample-by-sample with that of PC-based simulation. Maximum required time of 5 75 ms for processing a frame of 20 ms of speech validates real-time operation of the Implemented system.

Audio /Speech Codec Using Variable Delay MDCT/IMDCT (가변 지연 MDCT/IMDCT를 이용한 오디오/음성 코덱)

  • Sangkil Lee;In-Sung Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.69-76
    • /
    • 2023
  • A high-quality audio/voice codec using the MDCT/IMDCT process can perfectly restore the current frame through an overlap-add process with the previous frame. In the overlap-add process, an algorithm delay equal to the frame length occurs. In this paper, we propose a MDCT/IMDCT process that reduces algorithm delay by using a variable phase shift in MDCT/IMDCT process. In this paper, a low-delay audio/speech codec was proposed by applying the low delay MDCT/IMDCT algorithm to the ITU-T standard codec G.729.1 codec. The algorithm delay in the MDCT/IMDCT process can be reduced from 20 ms to 1.25 ms. The performance of the decoded output signal of the audio/speech codec to which low-delay MDCT/IMDCT is applied is evaluated through the PESQ test, which is an objective quality test method. Despite of the reduction in transmission delay, it was confirmed that there is no difference in sound quality from the conventional method.

Developing a Low Power BWE Technique Based on the AMR Coder (AMR 기반 저 전력 인공 대역 확장 기술 개발)

  • Koo, Bon-Kang;Park, Hee-Wan;Ju, Yeon-Jae;Kang, Sang-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.190-196
    • /
    • 2011
  • Bandwidth extension is a technique to improve speech quality and intelligibility, extending from 300-3400 Hz narrowband speech to 50-7000 Hz wideband speech. This paper designs an artificial bandwidth extension (ABE) module embedded in the AMR (adaptive multi-rate) decoder, reducing LPC/LSP analysis and algorithm delay of the ABE module. We also introduce a fast search codebook mapping method for ABE, and design a low power BWE technique based on the AMR decoder. The proposed ABE method reduces the computational complexity and the algorithm delay, respectively, by 28 % and 20 msec, compared to the traditional DTE (decode then extend) method. We also introduce a weighted classified codebook mapping method for constructing the spectral envelope of the wideband speech signal.

A Candidate Codec Algorithm on Superwideband Extension to ITU-T G.711.1 and G.722 (ITU-T G.711.1 및 G.722 슈퍼와이드밴드 확장 후보 코덱 알고리즘)

  • Sung, Jong-Mo;Kim, Hyun-Woo;Kim, Do-Young;Lee, Byung-Sun;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.62-73
    • /
    • 2010
  • In this paper we proposed a candidate algorithm on G.711.1 and G.722 superwideband extension codec which is under standardization by ITU-T. The proposed codec not only provides an interoperable bitstream with ITU-T G.711.1 and G.722, but also encodes a superwideband signal with a bandwidth of 50-14,000 Hz using superwideband extension layer. The candidate codec consists of a core layer to provide an interoperability with conventional wideband codecs and superwideband extension layer using linear prediction-based sinusoidal coding. The proposed extension codec operates on 5ms frame and provides four superwideband bitrates of 64, 80, 96, and 112 kbit/s depending on the core codec. Since the resulting bitstream has an embedded structure, it can be converted into core bitstream by simple truncation without transcoding. The proposed codec has a short algorithmic delay and low complexity and passed the qualification test of G.711.1 and G.722 superwideband extension codec performed by ITU-T.