• Title/Summary/Keyword: Widening process

Search Result 84, Processing Time 0.027 seconds

Nano-engineering of Hybrid Titanium Oxide Structure (TiO2) using Pore-widening Concentration for Enhanced Superhydrophilicity

  • Yeji Choi;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Titanium alloy is gaining attention in the medical industry due to its excellent biocompatibility and osteoconductivity. However, the natural oxide film on the titanium surface is insoluble, resulting in inadequate bone adhesion. Therefore, it is necessary to optimize the contact between biological tissues and implant surfaces, and alter the chemical composition and morphological characteristics of the implant surface. In this study, the anodization method was applied to titanium surface treatment to form a uniform and robust oxide film. Subsequently, a chemical process, pore-widening, was employed to change the morphological characteristics of the oxide film. The concentration of the pore-widening solution was varied at 2, 4, 6, and 8 wt% and the process time was set at 30 and 60 minutes. As the concentration of the pore-widening solution increased the pore diameter of the oxide film increased. Notably, at 6 wt% for 60 minutes, the oxide film exhibited a coexistence of pillars and pores. Based on this, it was determined that surface roughness increased with higher concentration and longer process time. Additionally, the presence of pillars and pores structures maximized hydrophilicity. This study provides insights into enhancing the surface properties of titanium for improved performance in medical implants.

Decision Making Model for Widening Bridges Using Decision Tree Technique (의사결정수 기법을 이용한 교량확폭에 관한 의사결정모델 개발)

  • Cho, Hyo Nam;Park, Jin-Hyung;Sun, Jong-Wan;Youn, Man-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.187-194
    • /
    • 2008
  • Recently, the constructions of widening bridges or new bridges are often undergoing as a part of road widening because traffic volumes are rapidly increasing caused by fast-growing population and urbanization. But in general, there is no rational decision process and specification to justify the validity of the bridge widening. Moreover, there are also numerous events including various uncertainties involved in widening bridges. In this paper, therefore, a decision making model is proposed for widening bridges using decision tree based on quantitative LCC analysis considering a variety of uncertainties for the rational and practical approach to a quantitative decision making for alternatives.

Fabrication of Alumina Membrane Using Anodic Oxidation Process (양극산화를 이용한 알루미나 나노세공 멤브레인의 제조)

  • Im, W.S.;Cho, K.C.;Cho, Y.S.;Choi, G.S.;Kim, D.J.
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.593-597
    • /
    • 2003
  • Anodic aluminum oxide (AAO) membrane was made of aluminum sheet (99.6%, 0.2 mm thickness). The regular array of hexagonal nano pores or channels were prepared by two step anodization process. A detail description of the AAO fabrication is presented. After the 1st anodization in oxalic acid (0.3 M) at 45 V, The formed AAO was removed by etching in a solution of 6 wt% $H_3$$PO_4$+1.8 wt% $H_2$$CrO_4$. The regular arrangement of the pores was obtained by the 2nd anodization, which was carried out in the same condition as the 1st anodization. Subsequently, the alumina barrier layer at the bottom of the channel layer was removed in phosphoric acid (1M) after removing of aluminum. Pore diameter, density, and thickness could be controlled by the anodization process parameters such as applied voltage, anodizing time, pore widening time, etc. The pore diameter is proportional to the applied voltage and pore widening time. The pore density and thickness can be controlled by anodization temperature and voltage.

Typology of Deteriorated Hiking Trails in Mountain National Parks of Korea (산악 국립공원 등산로의 훼손 유형과 요인)

  • Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.4
    • /
    • pp.416-431
    • /
    • 2011
  • Hiking trails in Mt Jiri, and Mt Halla, National Park have been examined in terms of their degrading factors. The trails are deteriorated by natural erosion processes as well as human trampling. Trail deterioration is classified into tread lowering, sidewall retreat, path widening and divergence based upon a place where erosional processes occur. Tread lowering and sidewall retreat is generally produced by natural erosion factors, whereas path widening and divergence is generated by human trampling. Rainwash is the most contributing process to tread lowering. By contrast, several processes such as rainwash, needle ice action, deflation, tree falling and animal activity play a major role in sidewall retreat according to physical conditions of a hiking trail. Path widening and divergence could be classified by a factor producing human trampling. There are lots of cases related to rainwash such as the tree root, gravel, and bedrock, exposed by a surface flow lowering a tread and the riser produced by tread scouring. A puddle of rainwater on a flat tread and a fallen tree of Abies koreana in a forest region are also major factors to cause path widening and divergence. A paved tread with stones encourages a hiker to walk out of a trail. Taking a shortcut also results in path widening and divergence without a factor giving a hiker inconvenience on a trail.

  • PDF

Treatment of Painful Rotator Interval Widening After Subcoracoid Decompression in Elite Archer - Case Report - (양궁 선수의 오구 충돌 증후군의 치료 후 발생한 회전근 간격의 손상에 대한 치료 - 증례 보고 -)

  • Park, Jin-Young;Lee, Seung-Jun
    • Clinics in Shoulder and Elbow
    • /
    • v.13 no.2
    • /
    • pp.280-285
    • /
    • 2010
  • Purpose: Coracoid impingement syndrome refers to subscapularis impingement between the coracoid process and lesser tuberosity of the humerus, and pain may occur when the arm is positioned in forward flexion, internal rotation and adduction. This position is common for archers. Material and methods: A female archer with coracoid impingement syndrome that was uncontrolled by conservative therapy underwent arthroscopic subcoracoid decompression. At the 20th postoperative month of follow up, she complained of painful rotator interval widening and so she underwent arthroscopic rotator interval plication. Results: At the postoperative 6th month of follow up after the second operation, she showed no pain and good functional results, and she returned to competing as an archer. Conclusion: We have reported here on a case of successful treatment of painful rotator widening after subcoracoid decompression in an elite archer.

Preparation of Nano Wire by Anodic Oxidation I. Characteristics of Alumina Nano-Template by Anodic Oxidation (양극산화법에 의한 나노와이어 제조I. 알루미나 나노 템플레이트의 특성)

  • Jo, Su-Haeng;O, Han-Jun;Park, Chi-Seon;Jang, Jae-Myeong;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2002
  • Anodic alumina layer can be used as templates for preparation of nano-structured materials, because porous oxide layer on aluminum shows a uniform pore size and a high pore density. In order to find out possibility for template material to prepare nano wire, the effects of the anodic applied potential, anodic time and the temperature of electrolyte on pore diameter of anodic alumina layer were studied using SEM and AFM. The pore diameter of anodic alumina layer increased with applied anodic potential and electrolytic temperature. Especially, the pore diameter of anodic oxide layers formed in chromic acid can be well replicated by widening process in $H_3$$PO_4$solution.

Preparation of Nano Wire by Anodic Oxidation II. Production of Nano Wire Using Anodic Alumina Template (양극산화법에 의한 나노와이어 제조 II. 알루미나 템플레이트를 이용한 나노와이어 제조)

  • Jo, Su-Haeng;O, Han-Jun;Park, Chi-Seon;Jang, Jae-Myeong;Jo, Nam-Don;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • To investigate the effect of properties of pores in anodic alumina template(AAT) on the formation and characteristics of metal nano wires, Cu and Ni nano wires were manufactured using anodic alumina template formed in various electrolytes. The characteristics of prepared metal nano wires using AAT could be replicated from those of pores in AAT. The diameters of nano wires could be controlled by the widening process of anodic porous film in $H_3PO_4$ solution. The shape ratio of the nano wire was shown to be $170{\pm}30$ for Ni nano wire formed by AAT made in sulfuric acid.

A Study of Pore Formation of AAO Film on Si Substrate with Optimizing Process (Si 기판에 제작된 AAO 박막의 기공 형성 최적화에 관한 연구)

  • Kwon, Soon-Il;Yang, Kea-Joon;Song, Woo-Chang;Lee, Jae-Hyeong;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.415-420
    • /
    • 2008
  • AAO films were fabricated on two kinds of substrates such as $Al/SiO_2/Si$ and Al/Ni/Ti/Si. To obtain well-aligned AAO film, we optimized process condition for buffer layer, electrolyte and voltage. In the case of oxalic acid, the AAO film with pore size of approximately 45 nm was obtained at voltage of 40 V, temperature of $10^{\circ}C$, oxalic acid of 0.3 M and widening time of 60 min. Then the thickness of barrier is less than 600 nm. In the case of sulfuric acid, the AAO film has pore size of 40 nm and barrier thickness of 400 nm with optimum conditions such as voltage of 25 V, temperature of $8^{\circ}C$, sulfuric acid of 0.3 M and widening time of 60 min.

Development of Fabrication Technique of Highly Ordered Nano-sized Pore Arrays using Thin Film Aluminum (박막 알루미늄을 이용한 규칙적으로 정렬된 나노급 미세기공 어레이 제조기술 개발)

  • Lee, Jae-Hong;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.708-713
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using the thin film aluminum deposited on silicon wafer was fabricated. It Is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2 M was used for low voltage anodization under 100 V, the chromic acid with 0.1 M was used for high voltage anodization over 100 V. The nano-sized pores with diameter of $60\~120$ nm was obtained by low voltage anodization of $40\~80$ V and those of $200\~300$ nm was obtained by high voltage anodization of $140\~200$ V. The pore widening process was employed for obtaining the one-channel with flat surface because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. Finally, the sample was immersed to the phosphoric acid with 0.1 M concentration to etching the barrier layer.

Structural and Electrical Properties of an Electrolyte-insulator-metal Device with Variations in the Surface Area of the Anodic Aluminum Oxide Template for pH Sensors

  • Kim, Yong-Jun;Lee, Sung-Gap;Yeo, Jin-Ho;Jo, Ye-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2364-2367
    • /
    • 2015
  • In this study, we fabricated an electrolyte-insulator-metal (EIM) device incorporating a high-k Al2O3 sensing membrane using a porous anodic aluminum oxide (AAO) through a two-step anodizing process for pH detection. The structural properties were observed by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction patterns (XRD). Electrochemical measurements taken consisted of capacitance-voltage (C-V), hysteresis voltage and drift rates. The average pore diameter and depth of the AAO membrane with a pore-widening time of 20 min were 123nm and 273.5nm, respectively. At a pore-widening time of 20 min, the EIM device using anodic aluminum oxide exhibited a high sensitivity (56mV/pH), hysteresis voltage (6.2mV) and drift rate (0.25mV/pH).