• Title/Summary/Keyword: Wiener-Hammerstein Model

Search Result 9, Processing Time 0.031 seconds

Hammerstein-Wiener Model based Model Predictive Control for Fuel Cell Systems (연료전지 시스템을 위한 헤머스테인-위너 모델기반의 모델예측제어)

  • Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.383-388
    • /
    • 2011
  • In this paper, we consider Hammerstein-Wiener nonlinear model for solid oxide fuel cell (SOFC). A nonlinear model predictive control (MPC) is proposed to trace the constant stack terminal power by Hydrogen flow as control input. After the stability of the closed-loop system with static output feedback controller is analysed by Lyapunov method, a nonlinear model predictive control based on the Hammerstein-Wiener model is developed to control the stack terminal power of the SOFC system. Simulation results verify the effectiveness of the proposed control method based on the Hammerstein-Wiener model for SOFC system.

Modeling of Memory Effects in Power Amplifiers Using Advanced Three-Box Model with Memory Polynomial (전력 증폭기의 메모리 효과 모델링을 위한 메모리 다항식을 이용한 향상된 Three-Box 모델)

  • Ku Hyun-Chul;Lee Kang-Yoon;Hur Jeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.408-415
    • /
    • 2006
  • This paper suggests an improved system-level model of RF power amplifiers(PAs) including memory effects, and validates the suggested model by analyzing the power spectral density of the output signal with a predistortion linearizer. The original three-box(Wiener-Hammerstein) model uses input and output filters to capture RF frequency response of PAs. The adjacent spectral regrowth that occurs in three-box model can be perfectly removed by Hammerstein structure predistorter. However, the predistorter based on Hammerstein structure achieves limited performance in real PA applications due to other memory effects except RF frequency response. The spectrum of the output signal can be predicted accurately using the suggested model that changes a memoryless block in a three-box model with a memory polynomial. The proposed model accurately predicts the output spectrum density of PA with Hammerstein structure predistorter with less than 2 dB errors over ${\pm}30$ MHz adjacent channel ranges for IEEE 802.11 g WLAN signal.

Adaptive Predistortion for High Power Amplifier by Exact Model Matching Approach

  • Ding, Yuanming;Pei, Bingnan;Nilkhamhang, Itthisek;Sano, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.401-406
    • /
    • 2004
  • In this paper, a new time-domain adaptive predistortion scheme is proposed to compensate for the nonlinearity of high power amplifiers (HPA) in OFDM systems. A complex Wiener-Hammerstein model (WHM) is adopted to describe the input-output relationship of unknown HPA with linear dynamics, and a power series model with memory (PSMWM) is used to approximate the HPA expressed by WHM. By using the PSMWM, the compensation input to HPA is calculated in a real-time manner so that the linearization from the predistorter input to the HPA output can be attained even if the nonlinear input-output relation of HPA is uncertain and changeable. In numerical example, the effectiveness of the proposed method is confirmed and compared with the identification method based on PSMWM.

  • PDF

System Identification of the Hammerstein Processes for Automatic Tuning of PID Controller Using Relay Feedback

  • Koo, Doe-Gyoon;Youn, Jung-Hoon;Lee, Jie-Tae;Sung, Su-Whan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.124.3-124
    • /
    • 2001
  • The nonlinearity of several chemical processes is usually approximated by a series of the nonlinear static element and the linear subsystem. In the case of the model that the nonlinear static element precedes the linear subsystem, it is called a Hammerstein model. It is a Wiener model when the order is reserved. Here we investigate a relay feedback identification method for Hammerstein type nonlinear processes. The proposed method separates the identification of the nonlinear static function from that of the linear subsystem by using a relay feedback method. From two times activation of nonlinear processes, we identify he whole range of the nonlinear static function as well as the ultimate information of the linear subsystem.

  • PDF

Adaptive Precompensation of Wiener Systems

  • Kang, Hyun-Woo;Bae, Ki-Taek;Cho, Yong-Soo;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.50-59
    • /
    • 1996
  • In this paper, an adaptive precompensator, which can reduce the distortion of a Wiener system effectively, is proposed. The previous techniques for adaptive precompensation, based on the Volterra series modeling to compensate the distortion of a nonlinear system, are not suitable for real-time implementation due to high computational burden and slow convergence burden and slow convergence rate. This paper presents an adaptive precompensation technique for the class of nonlinear subsystem, referred to as Wiener system. An adaptive algorithm for adjusting the parameters of a precompensator, structured by a hammerstein model, is derived using the stochastic gradient method. Also, an adaptive precompensatin technique which can effectively reduce nonlinear distortion in μ-law type of saturation characteristics is proposed. The validity of the proposed algorithm is confirmed through simulation by applying it to known Wiener systmes and a typical loudspeaker model.

  • PDF

Compensation of the Nonlinearity of the High-Power Amplifiers with Memory Using a Digital Feedforward Scheme (디지털 피드포워드 방식을 이용한 메모리 효과가 있는 전력 증폭기의 비선형성 보상)

  • Kim, Min;Shin, Ha-Yeon;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In this paper, we show the memory effect of the high-power amplifiers for wied-band signals, present a compensation method for the nonlinearity combined with memory effect, and analyze its performance. For the modeling and the compensation of the nonlinear high-power amplifier with memory effect, we investigate the Volterra series model, the Wiener model, and the Hammerstein model. As a compensator scheme, we propose a digital feedforward technique. Compared to analog feed-forward scheme, the proposed scheme has better stability and adaptability to the environmental changes. It has a simpler structure than the conventional digital nonlinear compensation schemes. The result of computer simulations using ADS of the Agilent shows that spectral re-growth is suppressed by more than 20 dB, which amounts to at least 10 dB back-off. Considering the compensation performance, implementation complexity, and convergence rate, we could conclude the Wiener model is most suitable for the proposed scheme.

Adaptive Predistortion Compensation for Nonlinearity of High Power Amplifiers

  • Ding, Yuanming;Ohmori, Hiromitsu;Sano, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.122-127
    • /
    • 2003
  • In this paper, an adaptive predistortion scheme is proposed to compensate nonlinear distortions caused by high power amplifiers (HPA) in OFDM systems. A complex Wiener-Hammerstein model (WHM) is used to describe input-output relationship of HPA with linear dynamics. The predistorter is directly identified by complex power series model with memory, which is an approximate inverse of the HPA expressed by the WHM. The effectiveness of the proposed adaptive compensation scheme is validated by numerical simulation for 64QAM-OFDM systems.

  • PDF

Fatigue Damage Estimation for Mooring lines of Spar Platform Using System Identification Method (시스템 식별법을 이용한 스파 플랫폼 계류라인의 피로 수명 예측)

  • Kim, Yong-Gyun;Kim, Yooil;Kim, Byoung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.161-168
    • /
    • 2016
  • This paper presents a methodology through which the time series of the dynamic response of mooring line tension can be predicted without relying on a time-consuming nonlinear time-domain analysis. The mooring line tension for the target short-term sea states was predicted using a Hammerstein-Wiener model, a popular system identification scheme, based upon the pre-calculated motion-tension time history data for some selected short-term sea states that do not overlap with the targeted ones. The obtained mooring line tension was further processed, and a fatigue damage comparison was made between the predicted and calculated values. The results showed that the predicted time series of the mooring line tension matched the calculated one fairly well. Thus, it is expected that the methodology may be employed to enhance the efficiency of mooring line tension analysis.

Comparison of PID Controllers by Using Linear and Nonlinear Models for Control of Mobile Robot Driving System (모바일 로봇 구동 시스템 제어를 위한 선형 및 비선형 모델 기반 PID 제어기 성능 비교)

  • Jang, Tae Ho;Kim, Youngshik;Kim, Hyeontae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • In this study, we conduct linear and nonlinear modeling of the DC motor driving system of a wheeled mobile robot, which is a nonlinear system involving dead zone, friction, and saturation. The DC motor driving system consists of a DC motor, a wheel, and gears. A linear DC motor driving system is modeled using a steady-state response and parameter measurements. A nonlinear DC motor driving model is identified with the use of the Hammerstein-Wiener method. By using these models, PID controllers for the DC motor system are then established. Each PID controller is applied as a low-level controller in order to achieve posture stabilization control for the real mobile robot. We also compare the performance of the proposed PID controllers in posture stabilization experiments by using several different final robot postures.