• Title/Summary/Keyword: Wild Panax ginseng

Search Result 112, Processing Time 0.028 seconds

The Comparison of Seasonal Ginsenoside Composition Contents in Korean Wild Simulated Ginseng (Panax ginseng) which were Cultivated in Different Areas and Various Ages

  • Yang, Byung Wook;Lee, Jae Bum;Lee, Jung Min;Jo, Min Su;Byun, Jae Kyung;Kim, Hyoung Chun;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The ginsenoside content was compared with wild simulated ginseng (Panax ginseng) collected every season at 11 wild simulated ginseng plantations in Korea. As a result, the total saponin of 7 years old wild simulated ginseng showed the highest content of 4.5% in spring sampling wild simulated ginseng, 2.0% in summer sampling wild simulated ginseng, 1.2% in winter sampling wild simulated ginseng and 1.0% in autumn sampling wild simulated ginseng. And also, the total saponin of 10 years old wild simulated ginseng showed the highest content of 3.9% in spring sampling wild simulated ginseng, summer sampling wild simulated ginseng (1.8%), winter sampling wild simulated ginseng (1.6%) and autumn sampling wild simulated ginseng (0.6%). Therefore, the total saponin of spring sampling wild simulated ginseng was about 4.5 - 6.5 times higher than that of autumn sampling wild simulated ginseng regardless of cultivation period.

Proteome Analysis of various types of Panax ginseng using 2-Dimensional Electrophoresis (인삼, 산양삼 및 산삼의 부위별 Proteome분석)

  • We, Jong-Sung;Park, Hee-Soo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.2 s.23
    • /
    • pp.5-18
    • /
    • 2007
  • Objectives : The purpose of this study was to obtain an objective differentiating method for various types of Panax ginseng: ginseng, cultivated wild ginseng, and natural wild ginseng which are distinctive according to their growing environment. Methods : The roots, stem, and leaves of several types of ginseng were collected and comparative analysis of proteome was conducted on each part using 2-DE and the results examined. Results : 1. Proteome images of the respective parts within the samples showed spot-matching in most cases, suggesting that they are genetically identical panax ginseng. 2. Similar distribution patters were seen within the different parts of the Panax ginseng: ginseng, Chinese cultivated wild ginseng, and the 5 and 10 years old Korean cultivated wild ginseng. 3. For a quantitative evaluation of spots showing differences among the samples, 102 spots from the roots, 109 spots from the stems, and 132 spots form the leaves which showed a difference were selected and centrifugal identification was conducted. 4. Peculiar proteins from each respective part of the Panax ginseng were identified and the top 20 spots with significant differences were selected and analyzed in order to provide a differentiation rate among the samples. The accuracy rate ranged between 23.0-38.8%. 5. Differentiation rate of the top 10 spots with significant differences showed a 50-85% accuracy rate, and the differentiation rate was especially high for the stem of Chinese cultivated wild ginseng and Korean cultivated wild ginseng.

Differentiation and authentication of Panax ginseng (Korea and China), Panax quinquefolius, and development of genetic marker by AFLP analysis.

  • Jeong, Jae-Hun;Jung, Su-Jin;Yun, Doh-Won;Yoon, Eui-Soo;Choi, Yong-Eui
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.157.2-157.2
    • /
    • 2003
  • Panax ginseng is one of the most important medicinal plant in the Orient. The international trade of ginseng is increasing yearly. The disguise of Chinese and American ginseng into Korean ginseng became a problem in recent years in Korea and an abroad. Obviously, an effective method of authentication of Korean ginseng from others at a DNA level, is necessary for the healthy development of the ginseng market. In order to develop convenient and reproducible methods for the identification of Korean ginseng, amplified fragment length polymorphism (AFLP) analysis was applied within Panax species (Korean cultivatied and wild ginseng, Chinese wild ginseng, American cultivatied and wild ginseng). (omitted)

  • PDF

Authentication of Korean Panax ginseng from Chinease Panax ginseng and Panax quinquefolius by AFLP analysis

  • Kim Bo-Bae;Jeong Jae-Hun;Jung Su-Jin;Yun Doh-Won;Yoon Eui-Soo;Choi Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2005
  • Panax ginseng is one of the most important medicinal plants in the world. The international trade of ginseng is increasing yearly. The disguise of Chinese and American ginseng into Korean ginseng became a problem in recent years in abroad and Korea. An effective method to authenticate the Korean Panax ginseng from others at a DNA level is necessary for the healthy development of the ginseng market. Amplified fragment length polymorphism (AFLP) analysis was applied to develop a method for the identification of Korean ginseng between Chinese ginseng and American ginseng. It is very difficult to detect the different polymorphic bands among Korean field cultivated ginseng, and between field and wild-cultivated ginseng. The genetic distance coefficient by AFLP analysis between field- and wild cultivated Korean ginseng was very low, 0.056. Whereas, polymorphic bands between Korean and Chinese wild-cultivated ginseng was significantly different. The genetic distance coefficient between wild-cultivated Korean and Chinese ginseng was 0.149. The genetic distance coefficients between the P. ginseng and P. quinquefolius were ranging from 0.626 to 0.666. These results support that the AFLP analysis could be applied to authenticate Korean P. ginseng from others Chinese P. ginseng and American ginseng (P. quinquefolius).

Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng

  • Sun, Hang;Liu, Fangbing;Sun, Liwei;Liu, Jianzeng;Wang, Manying;Chen, Xuenan;Xu, Xiaohao;Ma, Rui;Feng, Kai;Jiang, Rui
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.113-120
    • /
    • 2016
  • Background: The present study aimed to compare the relative abundance of proteins and amino acid metabolites to explore the mechanisms underlying the difference between wild and cultivated ginseng (Panax ginseng Meyer) at the amino acid level. Methods: Two-dimensional polyacrylamide gel electrophoresis and isobaric tags for relative and absolute quantitation were used to identify the differential abundance of proteins between wild and cultivated ginseng. Total amino acids in wild and cultivated ginseng were compared using an automated amino acid analyzer. The activities of amino acid metabolism-related enzymes and the contents of intermediate metabolites between wild and cultivated ginseng were measured using enzyme-linked immunosorbent assay and spectrophotometric methods. Results: Our results showed that the contents of 14 types of amino acids were higher in wild ginseng compared with cultivated ginseng. The amino acid metabolism-related enzymes and their derivatives, such as glutamate decarboxylase and S-adenosylmethionine, all had high levels of accumulation in wild ginseng. The accumulation of sulfur amino acid synthesis-related proteins, such as methionine synthase, was also higher in wild ginseng. In addition, glycolysis and tricarboxylic acid cycle-related enzymes as well as their intermediates had high levels of accumulation in wild ginseng. Conclusion: This study elucidates the differences in amino acids between wild and cultivated ginseng. These results will provide a reference for further studies on the medicinal functions of wild ginseng.

Comparisons of Acidic Polysaccharide Content in Various Ginseng Species and Parts (인삼 산성다당체의 삼류간 및 부위별 함량비교)

  • 도재호;이형옥
    • Journal of Ginseng Research
    • /
    • v.17 no.2
    • /
    • pp.145-147
    • /
    • 1993
  • The amounts of ginseng acidic polysaccharide (GAP) in red ginseng (Panax ginseng) were higher than those of wild and cultured Panax quinquefolius, Panax notoginseng as well as white ginseng (Panax ginseng). In white ginseng, there is no difference in the GAP amount among root ages or sizes. Also, the GAP amount of red ginseng body was similar to that of ginseng rhizome, but was higher than that of leaf and epidermis.

  • PDF

General Introduction of American Ginseng Indigenous in USA and Canada

  • Park, Chung-Heon;Bang, Kyung-Hwan;Park, Chun-Geun;Sung, Jung-Sook;Song, Won-Seob
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.165-169
    • /
    • 2003
  • American ginseng (Panax quinquefolium) is herbaceous perennial plants indigenous to North American forests. This is highly valued as medicinal herbs with a long history of collection from wild populations since 1716. Wild American ginseng distributed from Quebec in Canada to northern Florida in USA. A heavy concentration is found in the Appalachian mountains, although wild American ginseng is considered endangered. The price paid for field cultivated ginseng has dropped dramatically in the past 10 years, while the price for wild or woods cultivated ginseng has rised significantly. The price curve for ginseng resembles a roller coaster, reflecting not only supply and demand but many other factors. This information will be useful to understand American ginseng compared to Korean ginseng.

  • PDF

Identification and Analysis of the Chloroplast rpoC1 Gene Differentially Expressed in Wild Ginseng

  • Lee, Kwang-Ho;Kwon, Ki-Rok;Kang, Won-Mo;Jeon, Eun-Mi;Jang, Jun-Hyeog
    • Journal of Pharmacopuncture
    • /
    • v.15 no.2
    • /
    • pp.20-23
    • /
    • 2012
  • Panax ginseng is a well-known herbal medicine in traditional Asian medicine, and wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention. However, little has actually been reported on the difference between wild ginseng and cultivated ginseng. Thus, to identify and analyze those differences, we used suppressive subtraction hybridization (SSH) sequences with microarrays, realtime polymerase chain reaction (PCR), and reverse transcription PCRs (RT-PCRs). One of the clones isolated in this research was the chloroplast rpoC1 gene, a ${\beta}$subunit of RNA polymerase. Real-time RT-PCR results showed that the expression of the rpoC1 gene was significantly upregulated in wild ginseng as compared to cultivated ginseng, so, we conclude that the rpoC1 gene may be one of the important markers of wild ginseng.

The Comparative of Growth Characteristics and Ginsenoside Contents in Wild-simulated Ginseng (Panax ginseng C.A. Meyer) on Different Years by Soil Properties of Cultivation Regions

  • Kim, Kiyoon;Huh, Jeong-Hoon;Um, Yurry;Jeon, Kwon Seok;Kim, Hyun-Jun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.651-658
    • /
    • 2020
  • The aim of this study was to investigate the comparative growth characteristics and ginenoside contents of wild-simulated ginseng on different years (7 and 13-year-old) by monitoring soil properties of cultivation regions. Plant and soil samples were collected from 6 different cultivation regions. Soil organic matter (OM), total nitrogen (TN) and cation exchangeable capacity (CEC) were significantly higher in 13-year-old wild-simulated ginseng cultivation regions compared to 7-year-old wild-simulated ginseng cultivation regions. Growth characteristics of wild-simulated ginseng had shown significantly higher in 13-year-old wild-simulated ginseng compared to 7-year-old wild-simulated ginseng. Ginsenoside G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 were significantly higher in 13-year-old wild-simulated ginseng than 7-year-old wild-simulated ginseng. According to the results of correlation analysis, soil OM, TN and CEC of the cultivated regions were positively correlated with the growth of wild-simulated ginseng. In addition, the root length of wild-simulated ginseng showed positive correlation with ginsenoside content. Hence, this study was able to investigate the correlation between growth and ginsenoside content of wild-simulated ginseng based on soil characteristics of the cultivation regions.

Effect of Soil Properties and Soil Bacterial Community on Early Growth Characteristics of Wild-simulated Ginseng (Panax ginseng C. A. Meyer) in Coniferous and Mixed Forest (침엽수림과 혼효림에서 토양특성과 토양세균 군집이 산양삼 초기 생육특성에 미치는 영향)

  • Kim, Ki Yoon;Kim, Hyun Jun;Um, Yurry;Jeon, Kwon Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.3
    • /
    • pp.183-194
    • /
    • 2020
  • Background: This study investigated the effect of soil properties and soil bacterial community on early growth characteristics of wild-simulated ginseng (Panax ginseng C. A. Meyer) in coniferous and mixed forest experimental fields. Methods and Results: The soil bacterial community was analyzed using a high throughput sequencing technique (Illumina MiSeq sequencing). The relationship between the soil bacterial community, soil properties, and growth characteristics of wild-simulated ginseng were analyzed using principal coordinate analysis (PCoA) and the Pearson's correlation analysis. Soil properties and soil bacterial community showed significant difference with forest physiognomy. Results of Pearson's correlation analysis and PCoA showed that the soil properties (soil pH, organic matter, total nitrogen, and cation exchange capacity) and soil bacterial community had significant correlation with tree species ratio and early growth characteristics of wild-simulated ginseng. Conclusions: This study clearly demonstrated the effect of soil properties and soil bacterial community on early growth characteristics of wild-simulated ginseng in coniferous and mixed forest. Moreover, these results will help in the selection of suitable cultivation sites for wild-simulated ginseng.