• Title/Summary/Keyword: Wildfire detection

Search Result 17, Processing Time 0.025 seconds

A Machine Learning-Driven Approach for Wildfire Detection Using Hybrid-Sentinel Data: A Case Study of the 2022 Uljin Wildfire, South Korea

  • Linh Nguyen Van;Min Ho Yeon;Jin Hyeong Lee;Gi Ha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.175-175
    • /
    • 2023
  • Detection and monitoring of wildfires are essential for limiting their harmful effects on ecosystems, human lives, and property. In this research, we propose a novel method running in the Google Earth Engine platform for identifying and characterizing burnt regions using a hybrid of Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (multispectral photography) images. The 2022 Uljin wildfire, the severest event in South Korean history, is the primary area of our investigation. Given its documented success in remote sensing and land cover categorization applications, we select the Random Forest (RF) method as our primary classifier. Next, we evaluate the performance of our model using multiple accuracy measures, including overall accuracy (OA), Kappa coefficient, and area under the curve (AUC). The proposed method shows the accuracy and resilience of wildfire identification compared to traditional methods that depend on survey data. These results have significant implications for the development of efficient and dependable wildfire monitoring systems and add to our knowledge of how machine learning and remote sensing-based approaches may be combined to improve environmental monitoring and management applications.

  • PDF

The Study of DMZ Wildfire Damage Area Detection Method Using Sentinel-2 Satellite Images (Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구)

  • Lee, Seulki;Song, Jong-Sung;Lee, Chang-Wook;Ko, Bokyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.545-557
    • /
    • 2022
  • This study used high-resolution satellite images and supervised classification technique based on machine learning method in order to detect the areas affected by wildfires in the demilitarized zone (DMZ) where direct access is difficult. Sentinel-2 A/B was used for high-resolution satellite images. Land cover map was calculated based on the SVM supervised classification technique. In order to find the optimal combination to classify the DMZ wildfire damage area, supervised classification according to various kernel and band combinations in the SVM was performed and the accuracy was evaluated through the error matrix. Verification was performed by comparing the results of the wildfire detection based on satellite image and data by the wildfire statistical annual report in 2020 and 2021. Also, wildfire damage areas was detected for which there is no current data in 2022. This is to quickly determine reliable results.

Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment

  • Kim, Minho;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.517-534
    • /
    • 2019
  • In abrupt fire disturbances, high quality images suitable for wildfire damage assessment can be difficult to acquire. Quantifying wildfire burn area and severity are essential measures for quick short-term disaster response and efficient long-term disaster restoration. Planetscope (PS) imagery offers 3 m spatial and daily temporal resolution, which can overcome the spatio-temporal resolution tradeoff of conventional satellites, albeit at the cost of spectral resolution. This study investigated the potential of augmenting PS imagery by integrating the spectral information from Sentinel-2 (S2) differenced Normalized Burn Ratio (dNBR) to PS differenced Normalized Difference Vegetation Index (dNDVI) using histogram matching,specifically for wildfire burn area and severity assessment of the Okgye wildfire which occurred on April 4th, 2019. Due to the difficulty in acquiring reference data, the results of the study were compared to the wildfire burn area reported by Ministry of the Interior and Safety. The burn area estimates from this study demonstrated that the histogram-matched (HM) PS dNDVI image produced more accurate burn area estimates and more descriptive burn severity intervals in contrast to conventional methods using S2. The HM PS dNDVI image returned an error of only 0.691% whereas the S2 dNDVI and dNBR images overestimated the wildfire burn area by 5.32% and 106%, respectively. These improvements using PS were largely due to the higher spatial resolution, allowing for the detection of sparsely distributed patches of land and narrow roads, which were indistinguishable using S2 dNBR. In addition, the integration of spectral information from S2 in the PS image resolved saturation effects in areas of low and high burn severity.

Wildfire-induced Change Detection Using Post-fire VHR Satellite Images and GIS Data (산불 발생 후 VHR 위성영상과 GIS 데이터를 이용한 산불 피해 지역 변화 탐지)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1389-1403
    • /
    • 2021
  • Disaster management using VHR (very high resolution) satellite images supports rapid damage assessment and also offers detailed information of the damages. However, the acquisition of pre-event VHR satellite images is usually limited due to the long revisit time of VHR satellites. The absence of the pre-event data can reduce the accuracy of damage assessment since it is difficult to distinguish the changed region from the unchanged region with only post-event data. To address this limitation, in this study, we conducted the wildfire-induced change detection on national wildfire cases using post-fire VHR satellite images and GIS (Geographic Information System) data. For GIS data, a national land cover map was selected to simulate the pre-fire NIR (near-infrared) images using the spatial information of the pre-fire land cover. Then, the simulated pre-fire NIR images were used to analyze bi-temporal NDVI (Normalized Difference Vegetation Index) correlation for unsupervised change detection. The whole process of change detection was performed on a superpixel basis considering the advantages of superpixels being able to reduce the complexity of the image processing while preserving the details of the VHR images. The proposed method was validated on the 2019 Gangwon wildfire cases and showed a high overall accuracy over 98% and a high F1-score over 0.97 for both study sites.

Burned Area Detection After Wildfire Using Landsat 7 ETM+ SLC-off Images

  • Quoc, Khanh Le;Sy, Tan Nguyen;Nhat, Thanh Nguyen Thi;Thanh, Ha Le
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.117-129
    • /
    • 2013
  • The increasing demand for monitoring wildfires and their impact on the land surface have prompted studies of burned area extraction and analysis. To differentiate burned and unburned area, the earlier method of the Moderate Resolution Imaging Spectro-radiometer (MODIS) Burned Area Detection Algorithm was proposed to estimate the change in land surface based on the reflectance energy. The energy, whose wavelengths are sensitive to burning, was selected to calculate the change parameter $Z_{score}$. This method was applied using the MODIS images to produce a MODIS Burned Area product. The approach was to simplify this algorithm to make it compatible with the Landsat 7 ETM+ SLC-off images. To extract the refined version of burned regions, post-processing was carried out by applying a median filter, dilation morphology algorithm, and finally a gap filling method. The experimental results showed that the detailed burned areas extracted from the proposed method exhibited more spatial details than those of the MODIS Burned products in the large U.S areas. The results also revealed the discontinuous distribution of burned regions in Vietnam forests.

  • PDF

Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery (2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.179-197
    • /
    • 2020
  • Topographic normalization reduces the terrain effects on reflectance by adjusting the brightness values of the image pixels to be equal if the pixels cover the same land-cover. Topographic effects are induced by the imaging conditions and tend to be large in high mountainousregions. Therefore, image analysis on mountainous terrain such as estimation of wildfire damage assessment requires appropriate topographic normalization techniques to yield accurate image processing results. However, most of the previous studies focused on the evaluation of topographic normalization on satellite images with moderate-low spatial resolution. Thus, the alleviation of topographic effects on multi-temporal high-resolution images was not dealt enough. In this study, the evaluation of terrain normalization was performed for each band to select the optimal technical combinations for rapid and accurate wildfire damage assessment using PlanetScope images. PlanetScope has considerable potential in the disaster management field as it satisfies the rapid image acquisition by providing the 3 m resolution daily image with global coverage. For comparison of topographic normalization techniques, seven widely used methods were employed on both pre-fire and post-fire images. The analysis on bi-temporal images suggests the optimal combination of techniques which can be applied on images with different land-cover composition. Then, the vegetation index was calculated from the images after the topographic normalization with the proposed method. The wildfire damage detection results were obtained by thresholding the index and showed improvementsin detection accuracy for both object-based and pixel-based image analysis. In addition, the burn severity map was constructed to verify the effects oftopographic correction on a continuous distribution of brightness values.

Prediction of Wildfire Spread and Propagation Algorithm for Disaster Area (재난 재해 지역의 산불 확산경로와 이동속도 예측 알고리즘)

  • Koo, Nam-kyoung;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1581-1586
    • /
    • 2016
  • In this paper, we propose a central disaster monitoring system of the forest fire. This system provides the safe-zone and detection to reduce the suppression efforts. In existing system, it has a few providing the predicting of wildfire spread model and speed through topography, weather, fuel factor. This paper focus on the forest fire diffusion model and predictions of the path identified to ensure the safe zone. Also we have considering the forest fire of moving direction and speed for fire suppression and monitering. The proposed algorithm could provide the technique to analyze the attribute information that temperature, wind, smoke measured over time. This proposed central observing monitoring system could provide the moving direction of spred out forecast wildfire. This observing and monitering system analyze and simulation for the moving speed and direction forest fire, it could be able to predict and training the forest fire fighters in a given environment.

Artificial Intelligence-Based Detection of Smoke Plume and Yellow Dust from GEMS Images (인공지능 기반의 GEMS 산불연기 및 황사 탐지)

  • Yemin Jeong;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Soyeon Choi;Yungyo Im;Youngmin Seo;Jeong-Ah Yu;Kyoung-Hee Sung;Sang-Min Kim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.859-873
    • /
    • 2023
  • Wildfires cause a lot of environmental and economic damage to the Earth over time. Various experiments have examined the harmful effects of wildfires. Also, studies for detecting wildfires and pollutant emissions using satellite remote sensing have been conducted for many years. The wildfire product for the Geostationary Environmental Monitoring Spectrometer (GEMS), Korea's first environmental satellite sensor, has not been provided yet. In this study, a false-color composite for better expression of wildfire smoke was created from GEMS and used in a U-Net model for wildfire detection. Then, a classification model was constructed to distinguish yellow dust from the wildfire smoke candidate pixels. The proposed method can contribute to disaster monitoring using GEMS images.

Detection of Wildfire-Damaged Areas Using Kompsat-3 Image: A Case of the 2019 Unbong Mountain Fire in Busan, South Korea

  • Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Forest fire is a critical disaster that causes massive destruction of forest ecosystem and economic loss. Hence, accurate estimation of the burned area is important for evaluation of the degree of damage and for preparing baseline data for recovery. Since most of the area size damaged by wildfires in Korea is less than 1 ha, it is necessary to use satellite or drone images with a resolution of less than 10m for detecting the damage area. This paper aims to detect wildfire-damaged area from a Kompsat-3 image using the indices such as NDVI (normalized difference vegetation index) and FBI (fire burn index) and to examine the classification characteristics according to the methods such as Otsu thresholding and ISODATA(iterative self-organizing data analysis technique). To mitigate the salt-and-pepper phenomenon of the pixel-based classification, a gaussian filter was applied to the images of NDVI and FBI. Otsu thresholding and ISODATA could distinguish the burned forest from normal forest appropriately, and the salt-and-pepper phenomenon at the boundaries of burned forest was reduced by the gaussian filter. The result from ISODATA with gaussian filter using NDVI was closest to the official record of damage area (56.9 ha) published by the Korea Forest Service. Unlike Otsu thresholding for binary classification,since the ISODATA categorizes the images into multiple classes such as(1)severely burned area, (2) moderately burned area, (3) mixture of burned and unburned areas, and (4) unburned area, the characteristics of the boundaries consisting of burned and normal forests can be better expressed. It is expected that our approach can be utilized for the high-resolution images obtained from other satellites and drones.