• Title/Summary/Keyword: Winch

Search Result 125, Processing Time 0.031 seconds

Dynamic Characteristics of a Hydraulic Fishing Winch Simulator (유압식 어로 윈치 시뮬레이터의 동적 거동 특성)

  • LEE Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2004
  • To meet the increasing demand from various fishing fields for training of fishing equipment operators, a fishing winch simulator was designed to train maritime students in the correct and safe operation of hydraulic winches under various load conditions related to fishing operations. The aim of this study is to describe the basic dynamic characteristics of the newly developed hydraulic fishing winch simulator and particularly to analyze the mechanical responses produced on the winch operation controls. The winch simulator consists of two winch units, a computer control and data acquisition system, a control consol and other associated mechanisms. When one winch is in hauling mode, the other one will always be in loading mode. The revolution speed of the hauling winch was controlled by a proportional directional control valve, and the braking torque of the loading winch was controlled by a proportional pressure control valve. The simulation experiments indicated that the dynamic characteristics of the hauling winch followed the braking response characteristics of the loading winch. The tests also showed that the warp speed and tension linearly depend on the pressure differential across the motor of the loading winch controlled by operating the proportional pressure control valve during the hauling operation. The experience gained from various training courses showed that the fishing winch simulator was very realistic and it was valuable for training novice winch operators. The results of the winch simulation exercise were recorded and used to evaluate the training on the operation and handling of the winch system. From these test results, we concluded that the tension acting on the warp during hauling operations can successfully be simulated by controlling the pressure differential across the motor with step changes of the control input signal to the proportional pressure control valve of the loading winch.

Design and Experimental Verification on a Towing Winch (예인윈치의 설계 및 실험적 검증)

  • Yang, Seung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.489-495
    • /
    • 1999
  • This paper contains the design specification and detail design for a towing winch system. We analyze operating condition of the system and decide the design specification for the winch system, and also perform a detail design for the subsystem such as hydraulic winch system, control equipment and power supplier at the full scale development. The performance of designed towing winch is established by load tests and sea trial tests.

  • PDF

Development of a Seaborne Towing Winch System (함상용 예인 윈치 시스템의 개발)

  • 독고욱;양승윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • This paper contains the design specification and detail design for a seaborne towing winch system. We analyze operating condition of the system and decide the design specification for the towing winch system, and also perform a detail design for the subsystem such as hydraulic winch system, control equipment and power supplier at the full scale development. The performance of designed towing winch is established by load tests and sea trial tests.

  • PDF

Development of the Winch System Model for HILS of the Winch Control System (해상크레인용 윈치 제어시스템 HILS 구축을 위한 윈치 시스템 모델 개발)

  • Lim, Chae-Og;Shin, Sung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.937-946
    • /
    • 2021
  • The floating crane is used to lift the heavyweight on the ocean. The floating crane has a winch system for lifting the heavyweight and the system is controlled by the winch control system. The heavyweight is lifted safely by control of the winch control system. Before the make the control system and controller, there are many restricted conditions to test and validate at design and development steps. In order to solve the problems, commonly use the HILS (Hardware-In-the-Loop-Simulation). HILS is the method of test and validation for the hardware control system. It can be composed of the control system in hardware with surrounding environments which is a virtual model. In this study, we developed the winch system model for HILS of the 150t winch control system in a floating crane. Through this simulation and winch model, it can be applied to HILS for the winch control system.

A Study on Stabilization of Underwater TAS Winch System Deploy/Recover Operation Performance (수중용 TAS윈치 전개/회수 성능 안정화 방안에 관한 연구)

  • Chang, Ho-Seong;Cho, Kyu-Lyong;Hwang, Jae-Gyo;Lee, Sang-Yong;Kim, Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.472-482
    • /
    • 2019
  • This paper describes the stabilization of underwater TAS winch system Deploy/Recover operation performance. TAS winch installed on the stern of submarine performs to deploy/recover sensor, towing cable and rope tail which is deployed from the stern and separated from submarine itself. Also TAS winch provides transmission path of power to the sensor and data transmitting/receiving path which data are acquired from underwater environment like sound, depth and temperature. At the step of TAS winch evaluation test, sporadic standstill and rotating speed oscillation phenomenon were occurred. Winch motor provides the available torque to deploy/recover TAS and root cause analysis to the winch motor was done to find exact reason to sporadic malfunction. When winch motor was disassembled, eccentricity of rotor, slip-ring and the other composition part for winch motor were found. These might cause magnetic field distortion. To make TAS winch system more stable and block magnetic field distortion, this paper suggests methods to enhance fixing status installed in winch motor. For reliable data acquisition for TAS winch operation, the deploy/recover function of the improved type of TAS winch was verified in LBTS making similar condition with sea status. At the end of stage, improved type of TAS winch was tested on some functions not only deploy/recover function, but sustainability of TAS operation on specific velocity, steering angle of submarine in the sea trial. Improved type of TAS winch was verified in accordance with design requirement. Also, validity of suggested methods were verified by the sea trial.

A Dynamic Analysis of 150 ton Winch using Ocean Environment Data (해양 환경 데이터를 이용한 150톤 윈치의 동특성 해석)

  • Lee, Chang-Ho;Min, Cheon-Hong;Kim, Hyung-Woo;Jang, Jin-Woo;Hwang, Dong-Hwan;Rhyu, Yong-Suk
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.205-211
    • /
    • 2017
  • This paper seeks to provide a dynamic analysis of a 150 ton winch based on ocean environmental data. The winch model that was subjected to analysis was modeled from CAD to each subsystem by the commercial software DAFUL. The winch model has tree brake systems (disk brake, band brake and ratchet brake). The rotation motion of the motor and contact elements of the brake are applied to the winch model in order to analyze its dynamic characteristics. In addition, a crane-barge was modeled to apply ocean environmental data. The motion data of the crane-barge was produced by means of the RAO(Response Amplitude Operator) of the barge and wave spectrum. The reaction force of the translational joint was measured instead of the tension of the cable. The brake performance of the winch was produced and assessed based on the operating motion of the crane-barge.

Circuit Design of Drive Control for Winch Drum (윈치드럼 구동제어 회로설계)

  • 조상훈;양승윤;박래석
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.45-58
    • /
    • 2002
  • In this paper, we designed the circuit of drive control for towing winch. It is composed of reference voltage circuit for driving voltage reference, low pass filter circuit for noise reduction, dead zone circuit for initial transient input, and driving circuit for drum direction/velocity control. Also it is realized a drive control circuit for towing winch drum in accordance with PWM(pulse width modulation) method to suit it's purpose of a large capacity driving system. The performance of the designed circuit is analyzed by experiments and the appliablity for driving the towing winch drum satisfactorily is evaluated through a various testing.

A study on winch and load motion control system design considering dynamic parameter variation (동적파라미터 변동을 고려한 윈치 및 부하 운동제어시스템설계에 관한 연구)

  • PARK, Hwan-Cheol;KIM, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.293-301
    • /
    • 2017
  • In this study, a winch and load motion control system design method is introduced. Especially, the winch and load (moving cart) are connected with long wire rope which is extended to few kilometers long. Therefore, the rope length changes such that many dynamic parameter values are changed as well by winding and releasing the rope from the winch system. In this paper, the authors designed the control system by considering the real time parameter variation to occupy and keep good control performance continuously. The effectiveness of introduced method was evaluated by simulation results.