• Title/Summary/Keyword: Wind Turbine

Search Result 2,033, Processing Time 0.029 seconds

Power Curve Measurements on the 6kW Wind Turbine (6kW 풍력발전기의 출력곡선 측정)

  • Yoo, Neung-Soo;Nam, Yoon-Su;Lee, Jung-Wan;Cho, Joo-Suk
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.149-157
    • /
    • 2005
  • The power performance monitoring system for a small class of wind turbine is established. The wind turbine power performance characteristics are determined by measured power curve and the estimated annual energy production (AEP). The measured power curve is determined by collecting simultaneous measurements of wind speed and power output at the test site under varying wind conditions. In order to determine the power performance characteristics of the wind turbine accurately, the data are of sufficient quantity and quality shall be corrected according to defined criteria. In this study, the 6kW wind turbine made by Germany Inventus GmbH is examined.

  • PDF

Optimizing Performance of Wind Turbines

  • Kusiak, Andrew
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.467-470
    • /
    • 2009
  • Variable loads along the drive-train are attributed to frequent failures of gears, bearings, and other components. Wind parameters cannot be controlled and therefore any turbine load-reducing remedies must be established based on proper insights into the wind-turbine interactions. A novel control concept to performance optimization of wind turbines is presented. This proposed concept is based on analysis of the turbine status reflected in the SCADA data. Modern computational techniques are used to optimize performance of a wind turbine from tree basic perspectives: drive-train, power output, and power quality. The proposed approach demonstrates that gains in the metrics representing the three perspectives and the corresponding control goals can be significantly improved for any wind turbine. The solution is applicable different turbine types operating in different wind regimes, e.g., winds of different speeds and variability. Simple and transparent parameters allow an operator to determine a balance between the operations and maintenance, technical, business objectives. The proposed modeling framework was embedded in software. The software tool has been tested on the data collected from 1.5 MW wind turbines.

  • PDF

A Study on Properties of Torque Control for Wind Turbine (풍력터빈 토크제어의 특성 고찰)

  • Lim, Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1157-1162
    • /
    • 2009
  • The aerodynamic torque and power caused by the interaction between the wind and blade of wind turbine are highly nonlinear. For this reason, the overall dynamic behaviors of wind turbine have nonlinear characteristics. The aerodynamic nonlinearity also affects properties of torque control for wind turbine. In this paper, the nonlinear aerodynamic property according to the wind speed below rated power and its effects on the torque control system are investigated. Nonlinear parameter representing change of aerodynamic torque with respect to rotor speed is obtained by linearization technique. Effects of this aerodynamic nonlinear parameter on the closed-loop torque system with PI controller for an 1.5 MW wind turbine are presented.

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

Wind Turbine Simulators Considering Turbine Dynamic Characteristics (터빈의 동특성을 고려한 풍력 터빈 시뮬레이터)

  • Park, Hong-Geuk;Abo-Khalil, Ahmed. G.;Lee, Dong-Choon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.617-624
    • /
    • 2008
  • This paper proposes design and implementation of wind turbine simulators which incorporate the turbine dynamic characteristics. At first, the turbine output characteristic in steady state is modelled as a function of wind speed and then dynamic characteristics are modelled such as pitch angle control, torsional vibration, tower shadow effect, wind shear effect, and inertia effect. In addition, a wind speed simulator is developed which can generate the real wind speed pattern. The wind turbine simulator is implemented with 3[kW] M-G set(cage-type induction motor coupled with doubly-fed induction generator) at laboratory.

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

A Study on the Maintenance Plan Considering Maintenance Cycle of Wind Turbine Component (각 컴포넌트 유지보수 주기를 고려한 풍력발전 설비의 유지보수 계획에 관한 연구)

  • Lee, Yun-Seong;Shin, Jun-Hyun;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.39-45
    • /
    • 2013
  • Wind power is one of the fastest growing renewable energy sources. In these days, wind turbine shifts from onshore to offshore because the offshore wind farm has a abundant wind resource. However, offshore wind turbine is not easy to access, it has a long downtime when the failures of the wind turbine component occur. Therefore, the appropriate wind turbine maintenance plan is required to meet the economic and reliability of the components. This paper proposes the maintenance planning method based on the RCM(Reliability Centered Maintenance) to determine an economical maintenance cycle to satisfy the appropriate reliability of the wind turbine components. In order to compare the proposed method with the conventional RCM method, critical components are selected in the case study because they have a long downtime and a large amount of total cost.

Characteristics of Fatigue Load in a Wind Turbine by the Wake (후류에 의한 풍력터빈의 피로하중 특성)

  • Kim, Chung-Ok;Eum, Hark-Jin;Nam, Hyun-Woo;Kim, Gui-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.57-65
    • /
    • 2011
  • The wake generated by a wind turbine has an effect on performance of a downstream wind turbine as well as mechanical loads. This paper investigated characteristics of fatigue load at the blade root due to the wake effects and quantitatively analyzed its effects at operating condition of a 5MW tripod offshore wind turbine using Bladed 4.1 software. The wake effects was studied the way the wake's center position move from the rotor center to the blade tip to the far-away position where the wake doesn't affect the wind turbine. When wake's center was located on the blade tip or the rotor center, damage equivalent fatigue load was higher than other positions. It was up to 10~14% compared to those of non-wake case. Results of this study would be helpful to design wind turbines and wind farms to have lifetimes more than 20 years of the wind turbine.

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park Young-Min;Chang Byeong-Hee
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.28-36
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using commercial CFD code, Fluent. For the numerical analysis of wind turbine, the three dimensional Navier-Stokes solver with various turbulence models was tested. As a turbulence mode, the realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with its wind tunnel test and blind test data. Using the present method, numerical simulations for various size of wind tunnel models were carried out and characteristics were analyzed in detail. For wind tunnel test model, the size of nacelle may not be scaled down precisely because of available motor. The effect of nacelle size was also computed and analyzed though CFD simulation. The present results showed the good correlations in pre-stall region but much to be improved in post-stall region. In 2006 and 2007, the performance and the scale effect of standard wind turbine model will be tested in KARI(Korea Aerospace Research Institute) LSWT(Low Speed Wind Tunnel) and the present results will be validated with the wind tunnel data.

  • PDF

Development of PMSG Wind Power System Model using Wind Turbine Simulator and Matrix Converter (풍력터빈시뮬레이터와 매트릭스 컨버터를 적용한 PMSG 풍력발전 시스템 모델 개발)

  • Yun, Dong-Jin;Han, Byung-Moon;Cha, Han-Ju;Li, Yu-Long;Choi, Nam-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1130-1137
    • /
    • 2009
  • This paper describes a scaled model development of PMSG wind power system using wind turbine simulator and matrix converter. The wind turbine simulator, which consists of an induction motor with vector drive, calculates the output torque of a specific wind turbine using simulation software and sends the torque signal to the vector drive after scaling down the calculated value. The operational feasibility of interconnected PMSG system with matrix converter was verified by computer simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was conformed by experimental works with a laboratory scaled-model of wind power system. The simulation and experimental results confirm that matrix converter can be effectively applied for the PMSG wind power system.