• Title/Summary/Keyword: Wind pressure

Search Result 1,443, Processing Time 0.027 seconds

Natural wind impact analysis of transiting test method to measure wind pressure coefficients

  • Liu, Lulu;Li, Shengli;Guo, Pan;Wang, Xidong
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.199-210
    • /
    • 2020
  • Building wind pressure coefficient transiting test is a new method to test the building wind pressure coefficient by using the wind generated by a moving vehicle, which is susceptible to natural wind and other factors. In this paper, the Commonwealth Advisory Aeronautical Research Council standard model with a scale ratio of 1:300 is used as the test object, and the wind pressure coefficient transiting test is repeated under different natural wind conditions to study the influence of natural wind. Natural wind is measured by an ultrasonic anemometer at a fixed location. All building wind pressure coefficient transiting tests meet the test conditions, and the vehicle's driving speed is 72 km/h. The mean wind pressure coefficient, the fluctuating wind pressure coefficient, and the correlation coefficient of wind pressure are used to describe the influence of natural wind on the building wind pressure coefficient transiting test qualitatively and quantitatively. Some rules, which can also help subsequent transiting tests, are also summarized.

Estimation of Wind Pressure Coefficients on Even-Span Greenhouse Built in Reclaimed Land according to Roof Slop using Wind Tunnel (풍동을 이용한 간척지 내 양지붕형 온실의 지붕 경사에 따른 풍압계수 평가)

  • Kim, Rack-Woo;Kim, Dong-Woo;Ryu, Ki-Cheol;Kwon, Kyeong-Seok;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.269-280
    • /
    • 2014
  • To cope with increasing of vegetables and flowers consumptions, horticulture facilities have been modernized. Korea government recently announced construction plan of new greenhouse complex at reclaimed land. However wind characteristics of reclaimed land is totally different from those of inland, wind pressure on greenhouse built in reclaimed land should be carefully evaluated to secure structural safety on the greenhouse. In this study, as a first step, wind pressure coefficient and local wind pressure coefficient on even-span greenhouse were measured using wind tunnel test. ESDU was adopted to realize wind characteristics of reclaimed land such as wind and turbulence profiles. From the wind tunnel test, when wind direction was 0 degree, it was concluded that KBC2009 standard underestimated scale of wind pressure coefficients at roof area of greenhouse whereas NEN-EN2002 standard underestimated those at every surface of greenhouse. When wind direction was 90 degree, both standards did not well reflect the characteristics of wind pressure distribution. From the analysis of local wind pressure coefficients according to wind direction conditions, design of covering, glazing bar of greenhouse where large effects of the local wind pressure were estimated should be well established. Wind pressure coefficients and local wind pressure coefficients according to parts of the greenhouse were finally suggested and these results could be practically used for suggesting new design standards of greenhouse.

Field measurement and CFD simulation of wind pressures on rectangular attic

  • Peng, Yongbo;Zhao, Weijie;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.471-488
    • /
    • 2019
  • Wind pressure is a critical argument for the wind-resistant design of structures. The attempt, however, to explore the wind pressure field on buildings still encounters challenges though a large body of researches utilizing wind tunnel tests and wind field simulations were carried out, due to the difficulty in logical treatments on the scale effect and the modeling error. The full-scale measurement has not yet received sufficient attention. By performing a field measurement, the present paper systematically addresses wind pressures on the rectangular attic of a double-tower building. The spatial and temporal correlations among wind speed and wind pressures at measured points are discussed. In order to better understand the wind pressure distribution on the attic facades and its relationship against the approaching flow, a full-scale CFD simulation on the similar rectangular attic is conducted as well. Comparative studies between wind pressure coefficients and those provided in wind-load codes are carried out. It is revealed that in the case of wind attack angle being zero, the wind pressure coefficient of the cross-wind facades exposes remarkable variations along both horizontal and vertical directions; while the wind pressure coefficient of the windward facade remains stable along horizontal direction but exposes remarkable variations along vertical direction. The pattern of wind pressure coefficients, however, is not properly described in the existing wind-load codes.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures (쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성)

  • You, Jang-Youl;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi

  • Feng, Ruoqiang;Liu, Fengcheng;Cai, Qi;Yan, Guirong;Leng, Jiabing
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.11-24
    • /
    • 2018
  • Full-scale measurements of wind action on the open roof structure of the WuXi grand theater, which is composed of eight large-span free-form leaf-shaped space trusses with the largest span of 76.79 m, were conducted during the passage of Typhoons HaiKui and SuLi. The wind pressure field data were continuously and simultaneously monitored using a wind pressure monitoring system installed on the roof structure during the typhoons. A detailed analysis of the field data was performed to investigate the characteristics of the fluctuating wind pressure on the open roof, such as the wind pressure spectrum, spatial correlation coefficients, peak wind pressures and non-Gaussian wind pressure characteristics, under typhoon conditions. Three classical methods were used to calculate the peak factors of the wind pressure on the open roof, and the suggested design method and peak factors were given. The non-Gaussianity of the wind pressure was discussed in terms of the third and fourth statistical moments of the measured wind pressure, and the corresponding indication of the non-Gaussianity on the open roof was proposed. The result shows that there were large pulses in the time-histories of the measured wind pressure on Roof A2 in the field. The spatial correlation of the wind pressures on roof A2 between the upper surface and lower surface is very weak. When the skewness is larger than 0.3 and the kurtosis is larger than 3.7, the wind pressure time series on roof A2 can be taken as a non-Gaussian distribution, and the other series can be taken as a Gaussian distribution.

Calculation of Wind Loads on the Cladding of Apartment Building according to Panel Size (패널 크기에 따른 아파트 건축물 외장재의 풍하중 산정)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Kim, Won-Sool
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.739-744
    • /
    • 2007
  • Wind loads for cladding can be estimated using the maximum wind pressure including gust effects from wind-tunnel tests. However, when estimating the maximum wind pressure with gust effects, wind pressure coefficients for cladding would be different according to the averaging time of wind pressures, In the paper, for wind pressures obtained from wind-tunnel tests for apartment buildings, whose window panes were damaged by actual strong wind, it was investigated how pressure coefficients varied according to the size of cladding and averaging time using TVL method of Lawson. In result, it was found that the lesser the size of cladding and averaging time were, the larger pressure coefficients became. Accordingly, to estimate wind loads for cladding of apartment buildings and design it, the averaging time of wind pressures should be considered properly.

  • PDF

Characteristics of Wind Pressure Distributions Acting on Solar Collector Plate (태양열 집열판에 작용하는 풍압계수 분포 특성)

  • You, Ki-Pyo;Kim, Young-Moon;You, Jang-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.67-73
    • /
    • 2013
  • This paper attempted to bridge this gap by identifying the number of flat-plate solar collectors. The characteristics of wind pressure coefficients acting on flat-plate solar collectors which are most widely used were investigated for various wind direction. Findings from this study found that the location where the maximum wind pressure coefficient occurred in the solar collector was the edge of the collector. Regarding the characteristics according to the number of collectors, the paper found that downward wind pressure coefficient of the lower edge of the collector was higher than the upward wind pressure coefficient of the upper edge of the collector in the basic module (1 piece). However, as the number of collectors increases, the upward wind pressure coefficient of the upper edge become higher than the downward wind pressure coefficient of the lower edge. Finally yet important, it was found that the location of the maximum wind pressure coefficient was changed according to the number of solar collectors.

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.