• Title/Summary/Keyword: Wind-generated bubble

Search Result 7, Processing Time 0.025 seconds

Effects of Wind-Generated Bubbles on Sound Propagation (음파전달에 미치는 풍성기포의 영향)

  • Lee, Won-Byoung;Kim, Young-Shin;Joo, Jong-Min;Lee, Chang-Won;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.395-402
    • /
    • 2006
  • When an active SONAR works in the subsurface. its detection Performance is limited by the reverberation. The winds Play a primary role in the Production of bubbles in the ocean. And the bubbles as efficient scatters contribute to the reverberant field. In this Paper the effects of wind-generated bubbles on sound propagation in the subsurface are investigated as a mid-frequency Hull-mounted SONAR works. The active signal excess is calculated at source depths 3. 5. and 10m considering bubble layer for frequencies 5. 7.5, and 10kHz. The change of the near-surface sound speed tend to increase surface reverberation levels and change the active signal excess. In the 10m/s winds. the maximum detection range reduces over 3km through the near-surface . The reason is the upper refraction due to the wind-generated bubbles.

Collective Oscillations of a Bubble Cloud as a Source of Underwater Ambient Noise in the Ocean (해양에서의 수중소음원으로서 기포군의 집단운동)

  • Yoon, S.W.;Park, K.J.;Crum, L.A.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.47-51
    • /
    • 1991
  • it is well observed in the ocean that the surface disturbances due to rain, wind and breaking waves generate bubble clouds several meters deep from the water surfaces. Thses kinds of bubble clouds can work as a physical mechanism to produce underwater ambient noise. In the laboratory experiment observing the noise generated from a bubble cloud we showed a role of individual bubbles in collective oscillations of a bubble cloud. The experimental data agree very well with the theoretical predictions. These results confirm that the collective oscillations of a bubble cloud is one of the more likely mechanisms for an ocean ambient noise source around several hundred hertz.

  • PDF

A study on the estimation of wind noise level using the measured wind-speed data in the coastal area of the East Sea (동해 연안에서 관측된 풍속자료를 이용한 바람소음준위 추정 연구)

  • Park, Jisung;Kang, Donghyug;Kim, Mira;Cho, Sungho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.378-386
    • /
    • 2019
  • Unlike ship noise that radiates from moving ships, wind noise is caused by breaking waves as a result of the interaction between the wind and the sea surface. In this paper, WNL (Wind Noise Level) was modeled by considering the noise source of the wind as the bubble cloud generated by the breaking waves. In the modeling, SL( Source Level) of the wind noise was calculated using the wind-speed data measured from the weather buoy operated in the coastal area of the East Sea. At the same time as observing the wind speed, NL (Noise Level) was continuously measured using a self-recording hydrophone deployed near the weather buoy. The modeled WNL according to the wind speed and the measured NL removing the shipping noise from the acoustic raw data were compared in the low-frequency band. The overall trends between the modeled WNL and the measured NL were similar to each other. Therefore, it was confirmed that it is possible to model the WNL in the shallow water considering the SL and distribution depth of bubble cloud caused by the wind.

Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism (직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

Study of Imaging of Submarine Bubble Plume with Reverse Time Migration (역시간 구조보정을 활용한 해저 기포플룸 영상화 연구)

  • Dawoon Lee;Wookeen Chung;Won-Ki Kim;Ho Seuk Bae
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • Various sources, such as wind, waves, ships, and gas leaks from the seafloor, forms bubbles in the ocean. Underwater bubbles cause signal scattering, considerably affecting acoustic measurements. This characteristic of bubbles is used to block underwater noise by attenuating the intensity of the propagated signal. Recently, researchers have been studying the large-scale release of methane gas as bubble plumes from the seabed. Understanding the physical properties and distribution of bubble plumes is crucial for studying the relation between leaked methane gas and climate change. Therefore, a water tank experiment was conducted to estimate the distribution of bubble plumes using seismic imaging techniques and acoustic signals obtained from artificially generated bubbles using a bubble generator. Reverse time migration was applied to image the bubble plumes while the acquired acoustic envelope signal was used to effectively estimate bubble distribution. Imaging results were compared with optical camera images to verify the estimated bubble distribution. The water tank experiment confirmed that the proposed system could successfully image the distribution of bubble plumes using reverse time migration and the envelope signal. The experiment showed that the scattering signal of artificial bubble plumes can be used for seismic imaging.

Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism (직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun;Lee, Seung-Hong;Boo, Jeong-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.

Measurement of Honeycomb Turbulence in a Cavitation Tunnel Using Particle Image Velocimetry Method (PIV 기법을 이용한 캐비테이션 터널에서의 Honeycomb 난류 계측)

  • Ryu, Min-Cheol;Oh, Jung-Geun;Kim, Yoo-Chul;Koh, Won-Gyu;Lee, Youn-Mo;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.42-53
    • /
    • 2008
  • The two dimensional PIV (particle image velocimetry) measurement technique is applied to water flow in a narrow cavitation tunnel. The nearly homogeneous and isotropic turbulent flows are generated by the honeycomb installed in the tunnel and visualized with a PIV technique. The velocities in the measurement plane at the tunnel centerline 184cm downward from the honeycomb were measured and calculated by an image correlation technique. The turbulent properties are evaluated and each term in the turbulent kinetic energy equation is calculated for the conditions with different internal pressures. Lowering the internal pressure gives an effect on the turbulent flow due to growing bubbles which are resolved in the water. The turbulent kinetic energy in the measurement plane is decayed much slower than those of other research results carried out with wind tunnels. With decreasing the tunnel internal pressures the turbulent intensities are increased about 1.5 times and the anisotropic tendency is also increased.