• Title/Summary/Keyword: Winter Precipitation

Search Result 316, Processing Time 0.027 seconds

The Variations of Interstational and Interseasonal Rainfall in South Korea (남한의 지역간, 계절간 강수량의 특성)

  • 최희구
    • Water for future
    • /
    • v.11 no.2
    • /
    • pp.62-69
    • /
    • 1978
  • Interstational and interseasonal analyses of the correlation and variability in the seasonal and annual precipitation for 10 basic synoptic stations in South Korea, on the basis of rainfall record of over 40 years, are carried out. It is found that the climatic regions of precipitation could be classified by means of the interstational analysis for the correlations. Corrleation coefficients in interstational relationship of precipitation are lowest in autumn which characterizeds a strong locality while the highest value shows a relatively weak locality in winter. Interseasonal relationship between summer and winter precipitation shows mostly 10 percent significant level with all positive values. The magnitude of the variation coefficients are appeared to be in the order of winter, autumn, spring and summer. It is shown that the highest which is winter ranges between 0.33 0.58, and for the lowest summer, 0.26-0.44, respectively in the areal distribution of the coefficient. The secular changes of the variation coefficient in the recent trend show increases in spring at two station; Seoul and Incheon, in summer at Busan and in autumn at two stations; Busan and Incheon while in winter show devreases at the whole stations. An annual variation seems to show generally a constant trend as whole for all the stations.

  • PDF

Characteristics of Climate Change in Sowing Period of Winter Crops (최근 동계작물의 파종기간 동안 기후변화 특징)

  • Shim, Kyo Moon;Kim, Yong Seok;Jeong, Myung Pyo;Choi, In Tae
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.203-208
    • /
    • 2015
  • This study was conducted to provide the agricultural climatological basic data for the reset of sowing period of the winter crop on the double cropping system with rice. During the past 30 years from 1981 to 2010, mean air temperature has risen by $0.45^{\circ}C$ per 10 years (with statistical significance), while precipitation has decreased by 6.74 mm per 10 years and the numbers of days for precipitation has reduced by 0.23 days per 10 years (with no statistical significance) in the sowing period ($1^{st}$ Oct. to $5^{th}$ Nov.) of winter crop. It was analyzed that double cropping system of rice and winter crops need to be reset in the way of delaying the sowing time of winter crops, because rising trend of temperature was clear while variability of precipitation was great and the trend was not clear in the sowing period of winter crops. We have also analyzed the meteorological features of the sowing period of winter crops in 2014, and found that mean air temperature in 2014 was higher than that in normal years (similar to recent temperature change feature) while precipitation in 2014 was much more frequent than that in normal years (unlike recent precipitation features). Such tendency in 2014 made the sowing of winter crops difficult because mechanical sowing could not be worked in flooded paddy fields. Heavy rain in October 2014 was also analyzed as a rare phenomenon.

Evaluation of Predictability of Global/Regional Integrated Model System (GRIMs) for the Winter Precipitation Systems over Korea (한반도 겨울철 강수 유형에 따른 전지구 수치모델(GRIMs) 예측성능 검증)

  • Yeon, Sang-Hoon;Suh, Myoung-Suk;Lee, Juwon;Lee, Eun-Hee
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.353-365
    • /
    • 2022
  • This paper evaluates precipitation forecast skill of Global/Regional Integrated Model system (GRIMs) over South Korea in a boreal winter from December 2013 to February 2014. Three types of precipitation are classified based on development mechanism: 1) convection type (C type), 2) low pressure type (L type), and 3) orographic type (O type), in which their frequencies are 44.4%, 25.0%, and 30.6%, respectively. It appears that the model significantly overestimates precipitation occurrence (0.1 mm d-1) for all types of winter precipitation. Objective measured skill scores of GRIMs are comparably high for L type and O type. Except for precipitation occurrence, the model shows high predictability for L type precipitation with the most unbiased prediction. It is noted that Equitable Threat Score (ETS) is inappropriate for measuring rare events due to its high dependency on the sample size, as in the case of Critical Success Index as well. The Symmetric Extreme Dependency Score (SEDS) demonstrates less sensitivity on the number of samples. Thus, SEDS is used for the evaluation of prediction skill to supplement the limit of ETS. The evaluation via SEDS shows that the prediction skill score for L type is the highest in the range of 5.0, 10.0 mm d-1 and the score for O type is the highest in the range of 1.0, 20.0 mm d-1. C type has the lowest scores in overall range. The difference in precipitation forecast skill by precipitation type can be explained by the spatial distribution and intensity of precipitation in each representative case.

Long-term Changes in Wintertime Precipitation and Snowfall over Gangwon Province (강원 지역의 장기 겨울철 강수 및 강설 변화의 경향 분석)

  • Baek, Hee-Jeong;Ahn, Kwangdeuk;Joo, Sangwon;Kim, Yoonjae
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.109-123
    • /
    • 2017
  • The effects of recent climate change on hydrological systems could affect the Winter Olympic Games (WOG) because the event is dependent on suitable snow and ice conditions to support elite-level competitions. We investigate the long-term variability and change in winter total precipitation (P), snowfall water equivalent (SFE), and ratios of SFE to P during the period 1973/74~2015/16 in Gangwon province. The climatological percentages of SFE relative to winter total precipitation were 71%, 28%, and 44% in Daegwallyeong, Chuncheon, and Gangneung, respectively. The winter total P, SFE, and SFE/P has decreased (but not significantly), although significant increases of winter maximum and minimum temperature were detected at a 95% confidence level. Notably, a significant negative trend of SFE/P at Daegwallyeong in February, the month of the WOG, was attributable to a larger decrease in SFE related to the increases in maximum and minimum temperature. Winter wet-day minimum temperatures were warmer than climatological minimum temperatures averaged over the study period. The 20-year return values of daily maximum P and SFE decreased in Yongdong area. Since the SFE/P decrease with increasing temperature, the probability of rainfall rather than snowfall can increase if global warming continues.

Characteristics Analysis of the Winter Precipitation by the Installation Environment for the Weighing Precipitation Gauge in Gochang (고창 지점의 강수량계 설치 환경에 따른 겨울철 강수량 관측 특성 분석)

  • Kim, Byeong Taek;Hwang, Sung Eun;Lee, Young Tae;Shin, Seung Sook;Kim, and Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.514-523
    • /
    • 2021
  • Using the precipitation data observed at the Gochang Standard Weather Observatory (GSWO) during the winter seasons from 2014 to 2016, we analyzed the precipitation characteristics of the winter observation environment. For this study, we used four different types of precipitation gauges, i.e., No Shield (NS), Single Alter (SA), Double Fence Intercomparison Reference (DFIR), and Pit Gauge (PG). We analyzed the data from each to find differences in the accumulated precipitation, characteristics of the precipitation type, and the catch efficiency according to the wind speed based on the DFIR. We then classified these into three precipitation types, i.e., rain, mixed precipitation, and snow, according to temperature data from Gochang's Automated Synoptic Observing System (ASOS). We considered the DFIR to be the standard precipitation gauge for our analysis and the cumulative winter precipitation recorded by each other gauge compared to the DFIR data in the following order (from the most to least similar): SA, NS, and PG. As such, we find that the SA gauge is the most accurate when compared to the standard precipitation gauge used (DFIR), and the PG system is inappropriate for winter observations.

A Fingerprint of Global Warming Appeared in Winter Precipitation across South Korea (우리나라 겨울철 강수에 나타난 지구온난화의 징후)

  • Choi, Gwang-Yong;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.992-996
    • /
    • 2008
  • In this study, changes in precipitation across South Korea during snow seasons (November-April) and their potential are examined. Current (1973/74-2006/07) and future (2081-2100) time series of snow indices including snow season, snow-to-precipitation ratio, and snow impossible day are extracted from observed snow and precipitation data for 61 weather stations as well as observed and modeled daily temperature data. Analyses of linear trends reveal that snow seasons have shortened by 3-13 days/decade; that the snow-to-precipitation ratio (the percentage of snow days relative to precipitation days) has decreased by 4-8 %/decade. These changes are associated with pronounced formations of a positive pressure anomaly core over East Asia during the positive Arctic Oscillation winter years since the late 1980s. A snow-temperature statistical model demonstrates that the warming due to the positive core winter intensifies changes from snow to rain at the rate of $4.7cm/^{\circ}C$. The high pressure anomaly pattern has also contributed to decreases of air-sea thermal gradient which are associated with the reduction of snow could formation. Modeled data predict that a fingerprint of wintertime global warming causing changes from snow to rain will continue to be observed over the 21st century.

  • PDF

An Acidity Study of Precipitation Observed in Chongwon, Choongbook (충북 청원군 강수의 산성도 연구)

  • 정용승;김태군
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.29-39
    • /
    • 1992
  • A study on acidity in precipitation was carried out during May 1990 - April 1991 at two sites in Chongwon, Choongbook. We observed variations of pH from 4.0 to 7.0. Annual mean value of pH was 5.21 in the area. In particular, strong acidity of rain fall, pH 4.0 were observed during winter to early spring. Neutral values were observed during June to July and were due to wet deposition of atmospheric pollutants by stationary fronts in the rainy season. Interestingly, acidity of snow observed in winter was neutral and it was weaker than the acidity of rain in winter by a value of 2.0. Discussion is made on meteorological and chemical analyses and seasonal variations of acidity of precipitation.

  • PDF

Precipitation Change in Korea due to Atmospheric $ Increase

  • Oh, Jai-Ho;Hong, Sung-Gil
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.87-106
    • /
    • 1996
  • A precipitation change scenario in Korea due to atmospheric $ doubling has been provided with a mixed method (Rebinson and Finkelstein, 1991) based on the simulated precipitation data by three GCM(CCC, UI, and GFDL GCM) experiments. Through the analysis the precipitation change by atmospheric $ doubing can be summarized as follows : Korea may have more precipitation as much as 25mm/yr during spring season and more less 50 mm/yr during summer and autumn, respectively. In the contrary Korea may have less rainfall as much as 13 mm/yr during winter. In terms of percentage with respect to current climatological value of precipitation Korea may have more rain as much as 10%, 13% and 24%, respectively, for spring, summer and autumn than current climate. However, Korea may have less precipitation during winter than current climatological average.

  • PDF

Analysis of Meteorological Variation during Winter Barley Cropping Season in Korea (가을보리 재배기간중의 기상변화)

  • Shim Kyo-Moon;Lee Jeong- Taek;Yun Seong-Ho;Hwang Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.3
    • /
    • pp.95-102
    • /
    • 2000
  • The northward shift of the cultivation region of winter barley has been considered because of consecutive warm winters from the middle of 1980's. There was 1.02$^{\circ}C$ rise in mean air temperature during winter barley cropping season from 1975 to 1998. During this period, the maximum air temperature affected the mean air temperature rise rather than the minimum air temperature. The amount of mean precipitation was 513.3 mm during winter barley cropping season from 1975 to 1998 and was least in 1992. Sunshine hours has increased little by little in the all regions except rural regions. The air temperature during winter barley cropping season from 1987 to 1999 in which the winter was warm was higher than the normal air temperature(1961~1990). On the other hand, the air temperature during winter barley cropping season from 1974 through 1986 was similar to the normal air temperature. The amount of mean precipitation during winter barley cropping season from 1987 through 1999 was similar to the normal precipitation except April. During this period, the amount of mean precipitation of April was lower by 26 mm than the normal year(1961~1990). Sunshine hours during winter barley cropping season from 1987 to 1999 decreased generally in comparison with a normal year. Considering the air temperature rise during wintering from 1987 to 1998, it might be possible to extend the cropping area of winter barley northward.

  • PDF

Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석)

  • Kim, Byeong-Hee;Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.