• Title/Summary/Keyword: Wooden pile

Search Result 7, Processing Time 0.016 seconds

An analysis of problems and countermeasures in the installation of plastic greenhouse on reclaimed lands (간척지에 플라스틱 온실 설치 시의 문제점 분석 및 개선방안)

  • Yu, In-Ho;Ku, Yang-Gyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • Upon setting up a dedicated plastic greenhouse for tomato cultivation developed by the Rural Development Administration on the Gyehwa reclaimed land, this study was aimed at analyzing the problems can be occurred in the installation of plastic greenhouse on reclaimed lands as well as finding out solutions for improvement. A relatively cheaper wooden pile was used in the installation in order to supplement the soft ground conditions. Based on the results of ground investigation of the installation site, both the allowable bearing capacity and pulling resistance of the wooden pile with a diameter of 150 mm and a length of 10 m were computed and came out to be 30.645 kN. It was determined that the values were enough to withstand the maximum compressive force (17.206 kN) and the pullout force (20.435 kN) that are generally applied to the greenhouse footing. There are three problems aroused in the process of greenhouse installation, and the corresponding countermeasures are as follow. First, due to the slightly bent shape of the wooden pile, there were phenomenon such as deviation, torsion, and fracture when driving the pile. This could be prevented by the use of the backhoe (0.2) rotating tongs, which are holding the pile, to drive the pile while pushing to the direction of the driving and fixing it until 5 m below ground and applying a soft vibrating pressure until the first 2 m. Second, there exists a concrete independent footing between the column of the greenhouse and the wooden pile driven to the underground water level. Since it is difficult to accurately drive the pile on this independent footing, the problem of footing baseplate used to fix the column being off the independent footing was occurred. In order to handle with this matter, the diameter of the independent footing was changed from 200 mm to 300 mm. Last, after films were covered in the condition that the reinforcing frame and bracing are not installed, there was a phenomenon of columns being pushed away by the strong wind to the maximum of $11m{\cdot}s^{-1}$. It is encouraged to avoid constructions in winter, and the film covering jobs always to be done after the frame construction is completely over. The height of the independent footing was measured for 9 months after the completion of the greenhouse installation, and it was found to be within the margin of error meaning that there was no subsidence. The extent to the framework distortion and the value of inclinometers as well showed not much alteration. In other words, the wooden pile was designed to have a sufficient bearing capacity.

Characteristics of Uplift Resistance According to Shape Factor and Contact Area of Wooden Piles (나무말뚝 형상과 접촉면적에 따른 인발저항력 특성)

  • Song, Chang Seob;Kim, Myeong Hwan;Park, Oh Hyun;Woo, Jea Kuen;Kim, Gi Beom
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.27-33
    • /
    • 2021
  • Reclaimed land was mainly used as agricultural land for rice production. As a higher value-added business in the agriculture has recently been activated, green houses are being constructed. In case of green house construction on the reclaimed land, it is generally soft ground with high soil water content, so it is important to design the foundation for greenhouse construction. The object of this study, a pull-out test was conducted to derive the base line data of the wooden pile foundation when constructing a green house. To reproduce the actual site, 30% of soil saturation and 70% of soil saturation were created in the soil box. Groove number and depth were set as design factors of the wooden pile, and a pull-out test was conducted. As a result of the test, pull resistance increased as the number of grooves increased, pull-out resistance according to groove depth was different according to soil saturation. Also, after the experiment, we want to compare the set-up effects over time.

A Reinvestigation on Key Issues Associated with the Yimjin Boundary Making and Demarcation(1712~1713): Reconstructing the Distribution of Boundary Markers Based on Actual Survey Documents (역대 실지조사기록 검토를 통한 임진정계 경계표지물 분포 복원)

  • Lee, Kang-Won
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.5
    • /
    • pp.577-612
    • /
    • 2016
  • The distribution of boundary markers, set up during the Yimjin(1712) Boundary Making and Demarcation(YBMD), has less been addressed so far, although it is key material evidence on which we can reconstruct the whole processes of YBMD, together with the correction of widespread myths around YBMD. This paper aims to clarify the questions on the distribution of boundary markers associated with YBMD, built during August 1712 to September 1713, by reinterpreting the key documents of Actual Survey on them: Huh Ryang and Park Dosang(1913), Kim Woosik(1883), Lee Joongha(1885), Wu Luzhen(1907), Osone Seiji(1907), and Liu Jianfeng(1908), together with topographic maps by Japanese Imperial Army(1933), the report of expedition to Mt. Baekdu by Chungjin Teachers' College(1948), and the report of field survey by Jilin province's expedition(1957). As a result, the distribution of boundary markers built in 1712~1713 is successfully reconstructed, and summarized in the format of table and maps.

  • PDF

Features and Issues of the Wooden Chamber Tomb Covered with Stone in Gyeongju Jjoksam-Site (경주 쪽샘유적 적석목곽분의 특징과 과제)

  • Park, Hyoung-Youl
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.222-251
    • /
    • 2017
  • This paper analyzes the characteristics of the ancient tombs discovered in the Gyeongju site and discusses the direction of the excavation. There are six special features of the wooden chamber tomb covered with stone in Gyeongju. First, confirmation of the above-ground type and the underground type burial mound. Second, confirmation of the construction such as the partition of mound and the pile of stone structure. Third, confirmation of the frontal part structure of the protect stone such as pebble-stone layer, boundary stone. Fourth, confirmation of the relationship before and after the mound. Fifth, the circumference and boundary of the confirmed(before 1990s) burial mounds were discovered, resolving the uncertainty. Sixth confirmation of the crowd unit tombs. By summing up these six features, it is possible to clearly divide the individual units and the crowd units of the Silla tombs. Confirmation of individual units and crowd units can clarify the size and scope of the tombs located by the concatenation and overlap. It is possible to get a glimpse of the formation process through the interrelationships between the two sides. The tombs are located in the upper-and-lower layer structure of the tombs and show selective site selection. When this formative process is rearranged, it is understood that the Gyeongju Silla Cemetery is formed through the course of four stages. It is anticipated that it will be possible to make selective projects in the excavation survey based on the confirmation of the individual unit and the crowd unit of the Silla ancient tombs and the formation process.

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial (우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향)

  • Ha, Young sun;Hwang, Hui Y.;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

Effect of aeration on the physicochemical characteristics of livestock feces compost during composting period (퇴비화과정 중 공기공급 여부가 가축분뇨 퇴비의 물리화학적 특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Kang, Ho;Kim, Tai-ll;Park, Chi-Ho;Yang, Chang-Buem
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.57-65
    • /
    • 2003
  • Livestock farming is one of several industries that have faced criticism because of its impact on the water quality, soil contamination and air pollution. The livestock feces can cause some environmental problems. The best way to treat the feces is to recycle the manure as an organic fertilizer after fermentation or composting. This study was carried out to investigate the characteristics of composting of manure in several composting conditions. The variations of physicochemical characteristics of each compost piles containing different level of air volume were analyzed throughout the composting period. In this study, pigs manure compost piles mixed with saw dust were composted in 110L of laboratory scale plastic vessels and $1.5m^3$ of small cubic wooden composting vessels for 60days. The compost piles were ventilated continuously with air pump throughout the composting duration. The air volume ventilated into the piles was regulated by chock valve attached to the inlet pipe. The ventilation level was adjusted by 20, 50, 100, 150 and $200L/m^3/mim$, respectively. The highest temperature of the compost increased to $72^{\circ}C$ during composting period. After 20days from beginning of fermentation, concentrations of $H_2S$, $CH_3SH$, DMS and DMDS generated from compost piles were 29, 16, 6 and 5ppb in blow in state compost pile, conversely, in blow out state compost pile, the parameters were 32, 24, 15 and 14ppb, respectively.

  • PDF

A Study on Termite Monitoring Method Using Magnetic Sensors and IoT(Internet of Things) (자력센서와 IoT(사물인터넷)를 활용한 흰개미 모니터링 방법 연구)

  • Go, Hyeongsun;Choe, Byunghak
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.206-219
    • /
    • 2021
  • The warming of the climate is increasing the damage caused by termites to wooden buildings, cultural properties and houses. A group removal system can be installed around the building to detect and remove termite damage; however, if the site is not visited regularly, every one to two months, you cannot observe whether termites have spread within, and it is difficult to take prompt effective action. In addition, since the system is installed and operated in an exposed state for a long period of time, it may be ineffective or damaged, resulting in a loss of function. Furthermore if the system is installed near a cultural site, it may affect the aesthetic environment of the site. In this study, we created a detection system that uses wood, cellulose, magnets, and magnetic sensors to determine whether termites have entered the area. The data was then transferred to a low power LoRa Network which displayed the results without the necessity of visiting the site. The wood was made in the shape of a pile, and holes were made from the top to the bottom to make it easier for termites to enter and produce a cellulose sample. The cellulose sample was made in a cylindrical shape with a magnet wrapped in cellulose and inserted into the top of a hole in the wood. Then, the upper part of the wood pile was covered with a stopper to prevent foreign matter from entering. It also served to block external factors such as light and rainfall, and to create an environment where termites could add cellulose samples. When the cellulose was added by the termites, a space was created around the magnet, causing the magnet to either fall or tilt. The magnetic sensor inside the stopper was fixed on the top of the cellulose sample and measured the change in the distance between the magnet and the sensor according to the movement of the magnet. In outdoor experiments, 11 cellulose samples were inserted into the wood detection system and the termite inflow was confirmed through the movement of the magnet without visiting the site within 5 to 17 days. When making further improvements to the function and operation of the system it in the future, it is possible to confirm that termites have invaded without visiting the site. Then it is also possible to reduce damage and fruiting due to product exposure, and which would improve the condition and appearance of cultural properties.