• Title/Summary/Keyword: Workability

Search Result 1,126, Processing Time 0.031 seconds

Modeling slump of concrete with fly ash and superplasticizer

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.559-572
    • /
    • 2008
  • The effects of fly ash and superplasticizer (SP) on workability of concrete are quite difficult to predict because they are dependent on other concrete ingredients. Because of high complexity of the relations between workability and concrete compositions, conventional regression analysis could be not sufficient to build an accurate model. In this study, a workability model has been built using artificial neural networks (ANN). In this model, the workability is a function of the content of all concrete ingredients, including cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate, and fine aggregate. The effects of water/binder ratio (w/b), fly ash-binder ratio (fa/b), superplasticizer-binder ratio (SP/b), and water content on slump were explored by the trained ANN. This study led to the following conclusions: (1) ANN can build a more accurate workability model than polynomial regression. (2) Although the water content and SP/b were kept constant, a change in w/b and fa/b had a distinct effect on the workability properties. (3) An increasing content of fly ash decreased the workability, while raised the slump upper limit that can be obtained.

Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete

  • Mohamed, Sahraoui;Taye, Bouziani
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In this paper, the workability and static stability were evaluated using a proposed test method. Workability and static stability represent a key property of self-compacting concrete (SCC) in fresh state. A number of standardized test methods were developed to assess these properties. However, no accelerated test method reliably predicts both workability and static stability of SCC. In the present work, a modified K-slump test method was developed to evaluate workability and static stability of SCC. In order to take implicit mixture variations of SCC constituents that can affect fresh SCC properties, a central composite design was adopted to highlight the effect of gravel to sand ratio (G/S), gravel 3/8 to gravel 8/15 ratio (G1/G2), water to cement ratio (W/C), marble powder to cement ratio (MP/C) and superplasticizer content (SP) on workability measured with slump and flow time (T50) tests and static stability measured with sieve stability test (Pi), segregation test index (SSI), Penetration test (Pd) and the proposed K-slump test (Km). The obtained results show that G/S ratio close to 1 and G1/G2 ratio close to 60% can be considered as optimal values to achieve a good workability while ensuring a sufficient static stability of SCC. Acceptable relationships were obtained between Slump flow, Pi, Pd and Km. Results show that the proposed K-slump test allow to assess both workability and static stability of fresh SCC mixtures.

Method for estimating workability of self-compacting concrete using mixing process images

  • Li, Shuyang;An, Xuehui
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.781-798
    • /
    • 2014
  • Estimating the workability of self-compacting concrete (SCC) is very important both in laboratories and on construction site. A method using visual information during the mixing process was proposed in this paper to estimate the workability of SCC. First, fourteen specimens of concrete were produced by a single-shaft mixer. A digital camera was used to record all the mixing processes. Second, employing the digital image processing, the visual information from mixing process images was extracted. The concrete pushed by the rotating blades forms two boundaries in the images. The shape of the upper boundary and the vertical distance between the upper and lower boundaries were used as two visual features. Thirdly, slump flow test and V-funnel test were carried out to estimate the workability of each SCC. Finally, the vertical distance between the upper and lower boundaries andthe shape of the upper boundary were used as indicators to estimate the workability of SCC. The vertical distance between the upper and lower boundaries was related to the slump flow, the shape of the upper boundary was related to the V-funnel flow time. Based on these relationships, the workability of SCC could be estimated using the mixing process images. This estimating method was verified by three more experiments. The experimental results indicate that the proposed method could be used to automatically estimate SCC workability.

A Sugeestion of Rheological Performance Range for Manufacturing Mid-workability Concrete (중유동 콘크리트 제조를 위한 레올로지 성능 범위 제안)

  • Lee, Yu-Jeong;Lee, Young-Jun;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.305-318
    • /
    • 2021
  • The aim of the research is providing the rheological performance range for manufacturing "mid-workability concrete". The mid-workability concrete means the normal strength range concrete mixture with high workability. Since there is not enough study or quantitative definitions on performance of the mid-workability concrete, in this research, the performance range for high workability of mid-workability concrete mixture using rheology. Because of the mixture characteristics of generally used normal strength concrete such as relatively high water-to-cement ratio and no SCMs, segregation of coarse aggregate should be prevent to achieve a successful high workability. From the experimental study in this research scope, 5 to 35 Pa.s of plastic viscosity was desirable to prevent segregation for nid-workability concrete, and general performance range with rheological parameters was provided.

Estimating the workability of self-compacting concrete in different mixing conditions based on deep learning

  • Yang, Liu;An, Xuehui
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • A method is proposed in this paper to estimate the workability of self-compacting concrete (SCC) in different mixing conditions with different mixers and mixing volumes by recording the mixing process based on deep learning (DL). The SCC mixing videos were transformed into a series of image sequences to fit the DL model to predict the SF and VF values of SCC, with four groups in total and approximately thirty thousand image sequence samples. The workability of three groups SCC whose mixing conditions were learned by the DL model, was estimated. One additionally collected group of the SCC whose mixing condition was not learned, was also predicted. The results indicate that whether the SCC mixing condition is included in the training set and learned by the model, the trained model can estimate SCC with different workability effectively at the same time. Our goal to estimate SCC workability in different mixing conditions is achieved.

Prediction of workability of concrete using design of experiments for mixtures

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 2008
  • In this study, the effects and the interactions of water content, SP-binder ratio, and water-binder ratio on the workability performance of concrete were investigated. The experiments were designed based on flatted simplex-centroid experiment design modified from standard simplex-centroid one. The data gotten from the design was used to build the concrete slump model using neural networks. Research reported in this paper shows that a small number of slump experiments can be performed and meaningful data obtained with the experiment design. Such data would be suitable for building slump model using neural networks. The trained network can be satisfactorily used for exploring the effects of the components and their interactions on the workability of concrete. It has found that a high water content and a high SP/b ratio is essential for high workability, but achieving this by increasing these parameters will not in itself guarantee high workability. The w/b played a very important role in producing workability and had rather profound effects; however, the medium value about 0.4 is the best w/b to reach high slump without too much effort on trying to find the appropriate water content and SP/b.

Prediction of tillage Workability by Cone Index (원추지수를 이용한 경운 정지 작업의 작업성 예측)

  • 최석원;오영근;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2000
  • This study was conducted to recognize a possibility that cone index can be used as a means of evaluating the tillage workability. Cone indexes were measured every 24 hours after rainfall at the experimental plots, and the rotary and plowing operations were conducted at the same time. The workability was evaluated on a basis of three categories of good, fair and poor depending on the quality of the performed works. Although the workability was affected by many factors such as soil type, moisture content ground slope and weather condition, the duration and amount of rainfall were of most influence. Results of the study showed that a good workability was resulted from the cone indexes greater than an average of 552 kPa for rotary operations and 671 kPa for plowing operations. Fair work was obtained with cone indexes greater than an average of 331 kPa for rotary operations and 459 kPa for plowing operations. The cone indexes less than an average of 171 kPa and 149 kPa resulted in poor workabilities for rotary and plowing operations, respectively. The experimental results may provide a general guideline for evaluating the tillage workability by cone index.

  • PDF

Workability Characteristics of Polyester Polymer Concrete (폴리에스터 폴리머 콘크리트의 워커빌리티 특성)

  • 연규석;김광우;이봉학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.87-92
    • /
    • 1991
  • Since the material property of binder in polyester polymer concrete has a viscous mechanism, the workability of polyester polymer concrete mixture showed different characteristics from that of cement concretes. Therefore, this study was devised to evaluate workability characteristics of polyester polymer concrete using slump and flow tests. Study results showed that the test temperature and ST/UP ratio were the most dominantly affecting factor on the viscosity of binder, and viscosity of the binder was strongly correlated with the workability of polyester polymer concrete mixture.

  • PDF

The Effects PPF Fiber on Concrete Properties (PPF 섬유가 콘크리트의 물성에 미치는 영향)

  • 한만엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.150-155
    • /
    • 1993
  • The use of polypropylene fibers in concrete has been widely advertised by the fiber manufacturers. However, the behavior of concrete containing plastic fibers has not been fully understood. The effects of fiber on concrete have been forcused on shrinkage crack control mainly from field observation, and the mechanism and the side effect of fiber such as workability reduction have been neglicted. In this paper, the effect of fiber on workability and shrinkage properties have been studied. The addition of fiber significantly reduce workability and requires additional water to maintain the workability, which causes adversal effects on concrete properties.

  • PDF

Workability and Strength Properties of MMA-Modified Polyester Polymer Concrete (MMA 개질 폴리머 콘크리트의 작업성 및 역학적 성질)

  • 연규석;주명기;유근우;최종윤;김남길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.769-774
    • /
    • 2002
  • In this study, methyl methacrylate (MMA)- modified polyester polymer concrete, in which the MMA was added to the unsaturated polyester resin, was developed for improving the early-age strength and the workability of the conventional polymer concrete, binder of which was the unsaturated polyester resin. Then the fundamental properties of the polymer concrete such as workability and strength were surveyed. The experimental results showed that the workability was remarkably improved as the MMA contents increased, and the filler-binder ratio was turned out to be important factor for the workability. Slump prediction equation was derived by the regression analysis based on MMA content and filler-binder ratio. Furthermore, early-age strength was greater when the MMA content were increased in the range of 20-40 % but the strength rather showed a tendency of decrease when the MMA content was 50 %.

  • PDF