• Title/Summary/Keyword: X-ray Diffraction %28XRD%29

Search Result 4, Processing Time 0.024 seconds

The influence of L-arginine as an additive on the compressive strength and hydration reaction of Portland cement

  • Yildiz, Mine Kurtay;Gerengi, Husnu;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • The concrete quality relies on general factors like preparation technique, uniformity of the compaction, amount and appropriateness of the additives. The current article investigates the impact of a well knows amino acid, L-arginine as an additive on water requirements, setting durations and characterization of various cement samples. Compressive strength tests of reference and L-arginine added cements at age of 2, 7 and 28 days were carried out according to TS-EN 196-1. Samples were blended by incorporating various amounts of L-arginine (25 ppm, 50 ppm and 75 ppm) in the cement water mixture which were tested with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TG), scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDS) on the 28th day. Results revealed that L-arginine does not affect the setting time, volume expansion of cement and water demands negatively; rather it imparts enhanced sustainability to the samples. It was determined that the highest value belonged to the 75L mortar with an increase of 2.6% compared to the reference sample when the compressive strengths of all mortars were compared on the 28th day. Besides, it has been observed that the development of calcium silicate hydrate or C-S-H gel, calcium hydroxide or CH and other hydrated products are associated with each other. L-arginine definitely has a contribution in the consumption of CH formed in the hydration process.

Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution (PNN 치환에 따른 PMW-PNN-PZT-BF 세라믹스의 미세구조와 압전 특성)

  • Sin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.90-94
    • /
    • 2016
  • In this work, [$Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3-BiFeO_3$] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of $BiFeO_3$, $Li_2CO_3$, and $CaCO_3$ were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of $CaCO_3$, $Li_2CO_3$. However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at $920^{\circ}C$ showed the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33{\cdot}}g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=566$ [pC/N], $g_{33}=29.28[10^{-3}mV/N]$, $d_{33{\cdot}}g_{33}=16.57[pm^2/N]$, $k_p=0.61$, density=7.82 [$g/cm^3$], suitable for duplex ultrasonic sensor application.

Effect of Phosphate-to-binder and Water-to-binder Ratio on Magnesia-potassium Phosphate Cement (마그네시아-인산칼륨 시멘트에 대한 인산염 비 및 물-결합재비의 영향)

  • Lee, Kyung-Ho;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.275-281
    • /
    • 2017
  • This study examined the effect of water-to-binder ratio (W/B) and phosphate-to-binder ratio (P/B) on the flow, setting time, compressive strength development, and pH variation of magnesium-potassium phosphate composites, MKPC mortars. Ten mortars mixtures were prepared with the W/B varying from 20% to 40% at each P/B of 0.3 or 0.5. The hydration products and microstructural pore distribution of the MKPC pastes were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP). The initial flow and setting time of MKPC mortars tended to decrease with an increase of P/B, indicating that the final setting time was shortened by approximately 24% when P/B increased from 0.3 to 0.5. The slope of the early-strength development measured in the MKPC mortars was considerably higher than that of cement concrete specified in code provisions. For obtaining a relatively good 28-day strength (above 30 MPa) and a near neutral pH (below 9.0) in MKPC mortars, the P/B and W/B need to be selected as 0.5 and 30%, respectively. The strubite-K crystal increased with the increases of P/B and W/B, which leads to the decrease of the macro-capillary pores.

Pearl luster by chemical composition and internal structure of Akoya cultured pearl (아코야 진주의 화학조성과 내부구조가 진주광택에 미치는 영향에 관한 연구)

  • Sung, Min-Jun;Park, Jimin;Jang, Yun-Deuk
    • The Korean Journal of Malacology
    • /
    • v.28 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The patterns in X-ray diffraction (XRD) spectroscopy provide useful clue at $29.4^{\circ}$ to discriminate two types of Akoya cultured pearl which occurs difference of surface luster. Using the optical microscope, we could be confirmed that the nareous layer of each sample consist of different crystal form. In Fourier Transform Infrared (FT-IR) Spectroscopy analysis, the nareous layer of Akoya cultured pearls with poor luster shows some peaks at 712, 699, 1435, $1444cm^{-1}$ region and these peaks depend on the Calcite. But the nareous layer of pearls with excellent luster could not observed those peaks related with Calcite, we could observed Aragonite band at 699, $1085cm^{-1}$ region. Though this result, we know that the nareous layer of Akoya cultured pearls with excellent luster is mainly composed by Aragonite. Raman bands are also clearly demonstrated to occur difference of band intensity by difference of Aragonite content. In the Scanning Electron Microscope (SEM) analysis, we found that the Akoya cultured pearl luster and surface condition is associated with internal structure.