• Title/Summary/Keyword: X-ray imager

Search Result 35, Processing Time 0.037 seconds

Monte Carlo Studies on an Amorphous Silicon (a-Si:H) Digital X-Ray Imaging Device (무정형 실리콘(a-Si : H) 디지털 X-선 영상기기의 개발을 위한 Monte Carlo 컴퓨터 모의실험연구)

  • 이형구;신경섭
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.225-232
    • /
    • 1998
  • Results of Monte Carlo simulations on amorphous silicon based x-ray imaging arrays are described. In order to investigate the characteristics of amorphous silicon x-ray imaging devices and to provide the optimum design parameter, Monte Carlo simulations were performed. Monte Carlo simulation codes for our purpose were developed and various combinations of x-ray peak voltages, aluminum filter thicknesses, CsI(TI) thicknesses, and amorphous silicon photodiode pixel sizes were tested in connection with detection efficiency and spatial resolution of the amorphous silicon based x-ray imager. With usual Csl(TI) thickness of 300${\mu}{\textrm}{m}$-500${\mu}{\textrm}{m}$, detection efficiency was in the range of 70%-95% and energy absorption efficiency was in the range of 40%-70% for 60kVp-120kVp x-ray. From the simulations it was found that amorphous silicon pixel size and Csl(TI) thickness were the most important parameters which determine the resolution of the imager. By use of our simulation results we could provide proper combinations of Csl(TI) thicknesses and pixels sizes for optimum sensitivity and resolution.

  • PDF

REDUCING X-ray BRIGHT GALAXY GROUPS IMAGES WITH THELI PIPELINE

  • NIKAKHTAR, FARNIK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.671-673
    • /
    • 2015
  • Before analyzing the images taken with a Mosaic CCD imager, the images have to reach a state which can be used for further scientific analysis. The transformation of raw images into calibrated images is called data reduction. Transforming HEavely Light into Images (THELI) is a nearly fully automated reduction pipeline software (Erben et al., 2005). This pipeline works on raw images to remove instrumental signatures, mask unwanted signals, and perform photometric and astrometric calibration. Finally THELI constructs a deep co-added mosaic image and a weight map. In this poster, THELI data reduction procedures will be reviewed and the reduction process for raw images of seven X-ray bright groups, extracted from GEMS groups (Osmond & Ponman, 2004) obtained by the Wide Field Imager (WFI) mounted on MPG/ESO telescope at La Silla in March 2006 will be discussed.

A CMOS Bandgap Reference Voltage Generator for a CMOS Active Pixel Sensor Imager

  • Kim, Kwang-Hyun;Cho, Gyu-Seong;Kim, Young-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.71-75
    • /
    • 2004
  • This paper proposes a new bandgap reference (BGR) circuit which takes advantage of a cascode current mirror biasing to reduce the V$\_$ref/ variation, and sizing technique, which utilizes two related ratio numbers k and N, to reduce the PNP BJT area. The proposed BGR is designed and fabricated on a test chip with a goal to provide a reference voltage to the 10 bit A/D(4-4-4 pipeline architecture) converter of the CMOS Active Pixel Sensor (APS) imager to be used in X-ray imaging. The basic temperature variation effect on V$\_$ref/ of the BGR has a maximum delta of 6 mV over the temperature range of 25$^{\circ}C$ to 70$^{\circ}C$. To verify that the proposed BGR has radiation hardness for the X-ray imaging application, total ionization dose (TID) effect under Co-60 exposure conditions has been evaluated. The measured V$\_$ref/ variation under the radiation condition has a maximum delta of 33 mV over the range of 0 krad to 100 krad. For the given voltage, temperature, and radiation, the BGR has been satisfied well within the requirement of the target 10 bit A/D converter.

X-ray Sensitivity of Hybrid-type Sensor based on CaWO4-Selenium for Digital X-ray Imager

  • Park, Ji-Koon;Park, Jang-Yong;Kang, Sang-Sik;Lee, Dong-Gil;Kim, Jae-Hyung;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.133-137
    • /
    • 2004
  • The development of digital x-ray detector has been extensively progressed for the application of various medical modalities. In this study, we introduce a new hybrid-type x-ray detector to improve problems of a conventional direct or indirect digital x-ray image technology, which composed of multi-layer structure using a CaWO$_4$ phosphor and amorphous selenium (a-Se) photoconductor. The leakage current of our detector was found to be ∼180 pA/cm$^2$ at 10 V/m, which was significantly reduced than that of a single a-Se detector. The x-ray sensitivity was measured as the value of 4230 pC/cm$^2$/mR at 10 V/m. We found that the parylene thin film between a CaWO$_4$ phosphor and an a-Se layer acts as an insulator to prevent charge injection from indium thin oxide (ITO) electrode into an a-Se layer under applied bias.

The characteristic study of hybrid X-ray detector using ZnS:Ag phosphor (ZnS:Ag phosphor를 이용한 hybrid 형 X-ray detector 특성 연구)

  • Park, Ji-Koon;Gang, Sang-Sik;Lee, Dong-Gil;Cha, Byeong-Yeol;Nam, Sang-Hee;Choi, Heung-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.27-30
    • /
    • 2002
  • Photoconductor for direct detection flat-panel imager present a great materials challenge, since their requirements include high X -ray absorption, ionization and charge collection, low leakage current and large area deposition. Selenium is practical material. But it needs high thickness and high voltage in selenium for high ionization rate. We report comparative studies of detector sensitivity. One is an a-Se with $70{\mu}m$ thickness on glass. The other has hybrid layer of depositting ZnS phosphor with $100{\mu}m$ on a-Se. The leakage current of hybrid is similar to it of a-Se, but photocurrent is lager than a-Se. Both of them have high spatial resolution, but hybrid has higher sensitivity than a-Se at comparable bias voltage.

  • PDF

The Comparison of X-ray Response Characteristics of Vacuum Evaporated (진공증착된 CdTe와 $Cd_{0.85}Zn_{0.15}Te$ 필름의 X선 반응특성 비교)

  • Kang, S.S.;Choi, J.Y.;Cha, B.Y.;Moon, C.W.;Kim, J.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.845-848
    • /
    • 2002
  • The study of photoconductor materials is demanded for development for flat-panel digital x-ray Imager. In this paper, We investigated the feasibility of application as x-ray image sensor using Cd(Zn)Te compound with high stopping power on high radiation. These Cd(Zn)Te samples were fabricated by vacuum thermal evaporation method to large area deposition and investigated I-V measurement as applied voltage. The experimental results show that the additional injection Zn in CdTe film reduced the leakage current, for the $Cd_{0.85}Zn_{0.15}Te$ detector, the net charge had the highest value as $144.58pC/cm^2$ at 30 V.

  • PDF

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

Feasibility study of CdZnTe and CdZnTeSe based high energy X-ray detector using linear accelerator

  • Beomjun Park;Juyoung Ko;Jangwon Byun;Byungdo Park ;Man-Jong Lee ;Jeongho Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2797-2801
    • /
    • 2023
  • CdZnTeSe (CZTS) has attracted attention for applications in X- and gamma-ray detectors owing to its improved properties compared to those of CdZnTe (CZT). In this study, we grew and processed single crystals of CZT and CZTS using the Bridgeman method to confirm the feasibility of using a dosimeter for high-energy X-rays in radiotherapy. We evaluated their linearity and precision using the coefficient of determination (R2) and relative standard deviation (RSD). CZTS showed sufficient RSD values lower than 1.5% of the standard for X-ray dosimetry, whereas CZT's RSD values increased dramatically under some conditions. CZTS exhibited an R2 value of 0.9968 at 500 V/cm, whereas CZT has an R2 value of 0.9373 under the same conditions. The X-ray response of CZTS maintains its pulse shape at various dose rates, and its properties are improved by adding selenium to the CdTe matrix to lower the defect density and sub-grain boundaries. Thus, we validated that CZTS shows a better response than CZT to high-energy X-rays used for radiotherapy. Further, the applicability of an onboard imager, a high-energy X-ray (>6 MV) image, is presented. The proposed methodology and results can guide future advances in X-ray dose detection.