• Title/Summary/Keyword: X-ray photoemission spectroscopy

Search Result 74, Processing Time 0.037 seconds

X-ray Photoemission Spectroscopy Study of Cation-Deficient La$_{0.970}$Mn$_{0.970}$O$_3$ System (양이온 결손 La$_{0.970}$Mn$_{0.970}$O$_3$의 X-ray Photoemission Spectroscopy 관측)

  • 정우환
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.50-54
    • /
    • 1999
  • We have measured the x-ray photoemission spectroscopy of cation deficient La0.970Mn0.970O3 as a function of temperature. Detailed results on the chemical shifts and changes in Mn 2p and Lp 3d core levels due to variation of temperature have been obtained. The Mn 2p 3/2 and 1/2 main peaks and La 3d core spectrum shift to lower binding energy levels with increasing temperature. This XPS behavior is correlated with the strength of localization of Mn3+. The Jahn-Teller effect due to Mn3+ besides the conventional random potential effects is likely to localize charge carriers in La-.970Mn0.970O3.

  • PDF

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Brief Introduction to Angle-Resolved Photoemission Spectroscopy

  • Kim, Hyeong-Do
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.82-82
    • /
    • 2012
  • Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool to investigate the electronic structure of a single-crystalline solid. After the development of a two-dimensional electron detector, it became a basic experimental method in solid state physics comparable to other powerful tools such as x-ray and neutron scatterings. In this tutorial, I talk briefly on the basic principle of ARPES and its recent and future direction of development.

  • PDF

Probing the Molecular Orientation of ZnPc on AZO Using Soft X-ray Spectroscopies for Organic Photovoltaic Applications

  • Jung, Yunwoo;Lee, Nalae;Kim, Jonghoon;Im, Yeong Ji;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.151-155
    • /
    • 2015
  • The interfacial electronic structure between zinc phthalocyanine (ZnPc) and aluminumdoped zinc oxide (AZO) substrates has been evaluated by ultraviolet photoemission spectroscopy and angle-dependent x-ray absorption spectroscopy to understanding the molecular orientation of a ZnPc layer on the performance of small molecule organic photovoltaics (OPVs). We find that the ZnPc tilt angle improves the ${\pi}-{\pi}$ interaction on the AZO substrate, thus leading to an improved short-circuit current in OPVs based on phthalocyanine. Furthermore, the molecular orientation-dependent energy level alignment has been analyzed in detail using ultraviolet photoemission spectroscopy. We also obtained complete energy level diagrams of ZnPc/AZO and ZnPc/indium thin oxide.

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF

Interfacial Electronic Structure of Bathocuproine and Al: Theoretical Study and Photoemission Spectroscopy

  • Lee, Jeihyun;Kim, Hyein;Shin, Dongguen;Lee, Younjoo;Park, Soohyung;Yoo, Jisu;Jeong, Junkyeong;Hyun, Gyeongho;Jeong, Kwangho;Yi, Yeonjin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.169-169
    • /
    • 2014
  • Interfacial electronic structure of bathocuproine and Al was investigated using in-situ photoemission spectroscopy and density functional theory (DFT) calculations. Bathocuproine is used for exciton blocking and electron transport material in organic photovoltaics and Al is typical cathode material. When thin thickness of Al was thermally evaporated on BCP, gap states were observed by ultraviolet photoemission spectroscopy. The closest gap state yielded below 0.3 eV from Fermi level. By x-ray photoemission spectroscopy, interaction of Al with nitrogen of BCP was observed. To understand the origin of gap states, DFT calculation was carried out and gap states was verified with successive calculation of interaction of Al and nitrogen of BCP. Furthermore, emergency of another state above Fermi level was observed. Remarkable reduction of electron injection barrier between Al and BCP, therefore, is possible.

  • PDF

Charge Transfer Mechanism of Electrically Bistable Switching Devices based on Polyimide

  • Lee, Gyeong-Jae;Im, Gyu-Uk;Kim, Dong-Min;Lee, Mun-Ho;Gang, Tae-Hui;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.374-374
    • /
    • 2010
  • Charge transfer mechanism of poly(4,4'-aminotriphenylene hexafluoroisopropylidenediphthalimide) (TP6F PI) which exhibits bistable ON and OFF switching has been studied using photoemission electron spectroscopy (PES) and near-edge x-ray absorption fine structure (NEXAFS). Here, we demonstrate novel set-up in which holes are injected by photoemission process instead of direct charge carrier injection via metal electrode. The accumulated charges on the PI surface in the OFF state abruptly flow across the PI film when the bias voltage of a back electrode reaches a specific value, indicating that the film is changed to the ON state. Core level and x-ray absorption spectra probed at charge injection region via photoemission process do not show any evidences implying structural modification of TP6F PI during the phase change. Whereas, in valence band spectra, the highest occupied molecular orbital (HOMO) is shifted toward Fermi level, responsible for improved hole-mobility of TP6F PI of ON state.

  • PDF

Ring Formation of Furan on Epitaxial Graphene (단결정 그라핀 위에서의 퓨란의 고리모양 형성)

  • Kim, Ki-Jeong;Yang, Se-Na;Park, Young-Chan;Lee, Han-Koo;Kim, Bong-Soo;Lee, Han-Gil
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.252-257
    • /
    • 2011
  • The ring formation and electronic properties of furan adsorbed on graphene layers grown on 6H-SiC (0001) has been investigated using atomic force microscopy (AFM), near edge X-ray absorption fine structure (NEXAFS) spectra for the C K-edge, and core level photoemission spectroscopy (CLPES). Moreover, we observed that furan molecules adsorbed on graphene could be used for chemical functionalization via the lone pair electrons of the oxygen group, allowing chemical doping. We also found that furan spontaneously form rings with one of three different bonding configurations and the electronic properties of the ring formed by furan on graphene can be described using by AFM, NEXAFS and CLPES, respectively.