• Title/Summary/Keyword: Xylose

Search Result 783, Processing Time 0.03 seconds

Application of a Compatible Xylose Isomerase in Simultaneous Bioconversion of Glucose and Xylose to Ethanol

  • Chandrakant Priya;Bisaria Virendra S.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeast Saccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose and S. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and $30^{\circ}C$. This compatible xylose isomerase from Candida boidinii, having an optimum pH and temperature range of 4.5-5.0 and $30-35^{\circ}C$ respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol by S. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of $42.8\%$.

  • PDF

Isolation and Identification of Xylose fermenting Yeast (Xylose 발효효모의 분리 및 성질)

  • 김남순;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.505-509
    • /
    • 1988
  • Ethanol productivity of a xylose fermenting yeast (Candida sp. X-6-4l) isolated from soil was investigated in laboratory scale using Erlenmeyer flask and mini-jar tormentor. The optimal conditions of xylose fermentation in flask experiment were pH 4, asparagine as nitrogen source, xylose 20g/$\ell$, and in these condition, ethanol yield was about 80% to theoretical yield. Using mini-jar fermentor containing 5% total sugar with 2.5% xylose and 2.5% glucose, we obtained 2.3%(v/ v) ethanol and the corresponding efficiency was 72.3% of total sugar. In this case, the consumming speed of sugar under aerobic condition was faster than that of anaerobic condition, and glucose was used previously to xylose. The optimum concentration of xylose for ethanol fermentation in mini-jar fer-mentor scale was 5%, and the efficiency was 69% of total sugar(Alc.2.2% v/v).

  • PDF

Effect of Xylose and Glucose on Xylitol Production by Candida parapsilosis (Candida parapsilosis에 의한 Xylitol 생산시 Xylose와 Glucose가 미치는 영향)

  • Oh, Deok-Kun;Kim, Sang-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1151-1156
    • /
    • 1996
  • Effects of xylose and glucose on the xylitol production were investigated with Candida parapsilosis KFCC 10875. With increasing the ratio of glucose to xylose, xylitol production decreased but ethanol and glycerol production increased. The maximum concentrations of ethanol and glycerol were 21.5 g/l and 3.6 g/l, respectively, in a medium consisting of 10 g/l xylose and 40 g/l glucose. No xylitol was formed in the glucose medium without xylose since xylitol could not be produced from glucose alone. The inhibitory effect of ethanol, a major by-product, on xylitol production was also studied. As the added ethanol concentration was increased, xylitol production decreased. When cells were inoculated in a xylose medium after removing the by-product (ethanol), xylitol production was not inhibited. The concentrated cells grown on xylose or glucose were inoculated in a fermentor containing the xylose medium. The total activities $(specific{\;}activities{\times}\;cell\;concentration)$ of xylose reductase and xylitol dehydrogenase in concentrated cells grown on glucose were the same as those in a normal fermentation; the specific activities of the above enzymes in the cells grown on xylose were the same as those in a normal fermentation. It indicates that the xylitol productivity of concentrated cells grown on xylose could be increased with increasing the cell concentration. By using concentrated cells of 20 g/l grown on xylose, the final xylitol concentration of 40 g/l was obtained for 18 h fermentation from 50 g/l xylose.

  • PDF

Candida tropicalis에 의한 Xylose 와 Glucose로부터 Xylitol 생산

  • 오덕근;김상용
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.495-500
    • /
    • 1997
  • Xylitol production from xylose and glucose was investigated using Candida tropicalis KFCC-10960. As glucose concentration in xylose medium was increased, ethanol production increased. However, xylitol production was maximum at glucose concentration of 10 g/l. The concentrated cells grown on xylose or glucose were inoculated in xylose medium. The specific activities of xylose reductase and xylitol dehydrogenase, and xylitol production in concentrated cells grown on glucose were the same as those in concentrated cells grown on xylose. The results suggested that cells grown on glucose had the same xylitol producing activity as those grown on xylose. By feeding glucose in xylose medium, cell growth was achieved from glucose and xylitol production was obtained from xylose. By using this technique, a final xylitol concentration of 261 g/l was achieved from 300 g/l xylose in 41 hours which corresponded to a xylitol yield from xylose of 87% and a xylitol productivity of 6.37 g/1-h.

  • PDF

Candida parapsilosis에 의한 Xylitol 생성시 포도당의 영향

  • 오덕근;김종화
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.149-154
    • /
    • 1996
  • Effect of glucose addition to xylose medium on xylitol production was investigated by using Candida parapsilosis ATCC 21019 mutant. With increasing the ratio of glucose to xylose in total amount of 50 g/l as glucose and/or xylose, xylitol production was decreased but ethanol and glycerol production were increased. Ethanol and glycerol concentration were maxmum in 10 g/l of xylose and 40 g/l of glucose medium as 21.5 g/l and 3.6 g/l, respecti- vely. No xylitol was formed in glucose medium without xylose because xylitol could be not produced from glucose. With increasing the ratio of glucose to xylose, the activity of xylose reductase which converted xylose to xylitol were decreased. The activities of xylitol dehydrogeiiase which converted xylitol to xylulose and then cell materials were found to be constant regardless of the ratio of glucose to xylose. This results indicated that glucose addition to xylose medium on cell growth was not affected. In order to prevent the inhibitory effect of glucose on xylitol production, glucose in a fermentor was fed with low concentration and then ethanol and glycerol was critically decreased and the xylitol yield from xylose of the culture with glucose feeding was recovered the almost same as that with only 50 g/l of xylose. However, the xylitol yield from total sugars (xylose and glucose) was decreased and glucose was not contributed to xylitol production. Therefore, the fermentation at high concentration of xylose without glucose was carried out. A final xylitol concentration of 242 g/l which corresponding 80.7% of xylitol yield was obtained from 300 g/l of xylose for 273 hours.

  • PDF

Effects of Feeding Xylose on the Growth of Broilers and Nutrient Digestibility as well as Absorption of Xylose in the Portal-drained Viscera

  • Peng, Y.L.;Guo, Y.M.;Yuan, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1123-1130
    • /
    • 2004
  • Two experiments were conducted to examine the effects of dietary inclusion of xylose on growth performance, nutrient digestibility and xylose absorption in the portal-drained viscera of broiler chicks. In Exp. 1, ninety male 14 day-old broilers were used to study the effects of different inclusion levels (0, 5, 10, 20 and 40%) of D-xylose in the semi-purified diets on the growth and nutrient digestibility of broilers. In Exp. 2, One hundred and eight male broilers, fed by precision feeding at 22 day-old, were used to investigate the absorption and transportation of dietary xylose in the portal-drained viscera of broiler. The results of Exp. 1 indicated that the growth of broilers was gradually decreased as the xylose level increased (p<0.01). With the xylose supplementation increased, the moisture in broiler excreta was gradually elevated (p<0.01), AME and the digestibilities of crude protein and ether extract were significantly reduced and the digestibilities of xylose and arabinose were also decreased (p<0.01). The results of Exp. 2 showed that the concentrations of ribose, xylose and galactose in serum were significantly influenced by different dietary levels of xylose (p<0.01), but there's no apparent difference among rhamnose, glucose and arabinose (p>0.05). The xylose concentration in serum was highest in Vena Cava, middle in Portal Vein and lowest in Ulnar Vein within 6 h after precision feeding. And then the xylose concentration in Portal Vein and Ulnar Vein were higher than that of Vena Cava. The concentration of ribose, xylose and galactose in serum were also significantly changed with time prolongation (p<0.01). The concentration of xylose in serum was highest in the 40% xylose treatment, middle in the 20% xylose group and lowest in the control group. The glycogen contents in liver and muscle were linearly decreased as the level of xylose increased (p<0.01). The higher the dietary level of xylose was, the lower digestibility of dietary xylose was (p<0.10). 40% xylose markedly decreased the digestibility of dietary glucose (p<0.01). In conclusion, high levels of xylose in the diets inhibited the growth and nutrient digestibility of broiler. The outputs of xylose from the hydrolyzation of wheat-based diet by xylanase should have no adverse effects on broiler performance.

Fermentation of Glucose, Xylose and Cellobiose by Pichia stipitis (Pichia stipitis에 의한 Glucose, Xylose 및 Cellobiose의 발효)

  • 이유석;권윤중;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.91-95
    • /
    • 1992
  • The hydrolyzates of lignocellulosic biomass contain a mixture of glucose, xylose and cellobiose. The yeast which can produce ethanol efficiently from xylose and cellobiose was selected and its growth and ethanol formation behavior on each sugar and their mixture were investigated. Ethanol yields during batch culture of Pichia stipitis CBS 5776 were 0.4. 0.36 and 0.23 g/g substrate on glucose, xylose and cellobiose, respectively. Mixed sugar fermentation data indicate that glucose causes catabolite regulation on xylose and cellobiose utilization. However, xylose and cellobiose were utilized simultaneously. Ethanol yields on mixtures of sugars were generally additive for each of the substrates.

  • PDF

A Study on the Reaction Rates of Maillard Browning Reaction of Dipeptides with Xylose (Dipeptide류와 당에 의한 Maillard 갈색화반응의 반응속도에 관한 연구)

  • 김희주;안명수
    • Korean journal of food and cookery science
    • /
    • v.12 no.1
    • /
    • pp.108-114
    • /
    • 1996
  • The study was carried out to compare the reaction rate of Maillard browning reaction of 2 dipeptides (Leucylglycine, Tryptophylglycine) and 4 amino acids (Lysine, Glycine, Leucine, Tryptophan) with xylose heated for 0∼24 hours at 60∼100$^{\circ}C$. 1. The color intensity of the browning mixture heated at 100$^{\circ}C$ for 24 hours was the highest in tryptophanxylose, and in order to tryptophylglycine-xylose > lysine-xylose > leucylglycine-ylose > leucine-xylose > glycine-xylose. 2. The reaction rate constants (k) determined from the browning pigment concentrate with time were similar to the result of the color intensity, that is, the k were the highest in the tryptophan-xylose. 3. The residual amounts of dipeptides, amino acids and xylose in the browning mixture diminished as the browning temperature increase. 4. The activation energies (Ea) calculated from k were the highest in leucine-xylose (143.72 J/mol) and the lowest in tryptophan-xylose (117.45 J/mol). The range of Q$\sub$10/ values were 2.84∼3.58.

  • PDF

Study on the Proper D-Xylose Concentration in Sugar Mixture to Reduce Glycemic Index (GI) Value in the Human Clinical Model (설탕에 대한 Glycemic Index(GI) 저감효과가 있는 D-Xylose의 적정 농도에 관한 연구)

  • Moon, Sunghyun;Lee, Kyungsun;Kyung, Myungok;Jung, Sangwon;Park, Yunje;Yang, Chang-Kun
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.787-792
    • /
    • 2012
  • The objective of this study was to investigate the proper concentration of D-xylose which is expected to reduce the GI (Glycemic index) value of sucrose in the human body. When subjects took a sucrose mixture containing 5% and 10% D-xylose, the blood glucose levels were lowered by approximately 27.5% and 25.9%, respectively, compared to those of sucrose. The GI values of sucrose mixtures containing 5% and 10% D-xylose were 49.3 and 50.4, respectively. The reduction in GI value was not dependent on the D-xylose concentration, as the GI value of sucrose mixture containing 5% D-xylose (XyloSugar) was similar to that of sucrose mixture containing 10% D-xylose (XyloSugar10). D-xylose is not only more expensive but also less sweet than sucrose. So, low concentration of D-xylose has the advantage in the price and taste. It was determined that the proper concentration of D-xylose expected to reduce GI value of sucrose was 5% (w/w).

Conversion of Xylose to Ethanol by Recombinant Saccharomyces cerevisiae Containing Genes for Xylose Reductase and Xylose Reductase and xylitol Dehydrogenase from Pichia stipitis

  • Jin, Young-Su;Lee, Tae-Hee;Choi, Yang-Do;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.564-567
    • /
    • 2000
  • A recombinant Saccharomyces cerevisiae, transformed with the genes encoding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) orginated from Pichia stipitis CBS 5776, was developed to directly convert xylose to ethanol. A fed-batch fermentation with the recombinant yeast produced 8.7 g ethanol/l with a yield of 0.13 g ethanol/g xylose consumed.

  • PDF