• Title/Summary/Keyword: Yield-per-recruit model

Search Result 12, Processing Time 0.027 seconds

Population Ecological Characteristics of the Soft-shelled Clam, Mya japonica in the Intertidal Zone of South Sea in Korea (한국 남해안 조간대에 서식하는 우럭, Mya japonica의 자원생태학적 특성)

  • 이선길;장창익
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.234-243
    • /
    • 2000
  • This paper is to study population ecological characteristics, including growth parameters, survival rate, instantaneous coefficients of natural and fishing mortalities, and age at first capture of the soft-shelled clam, Mya japonioa in the intertidal zone of South Sea in Korea. For describing growth of the clam a von Bertalanffy growth model was adopted, The von Bertalanffy growth curve had an additive error structure and the growth parameters estimated from a non-linear regression were SH/sub ∞/=79.83mm, K=0.26, and t/sub 0/= -0.01. Survival rate (S) of the soft-shelled clam was 0.26 (SD=0.02). The instantaneous coefficients of natural mortality (M) was estimated to be 0.78/year and fishing mortality (F) 0.57/year for the soft-shelled clam. The age at first capture (t/sub c/) was estimated as 2.69 year. The mean densities of the soft-shelled clam by bottom type were 3.40 inds./m²(SE=0.18) in the sand, 63.4 inds./m²(SE= 0.53) in the muddy sand, and 0 inds./m2 (SE=0) in the gravelly sand. The mean densities of the soft-shelled clam by 3 different areas were 4.88 inds./m²(SE=0.09), 2.61 inds./m²(SE=0.13), 7.20 inds./m²(SE=0.18), respectively and the biomass of the clam were estimated as 131mt, 121mt, 665mt, respectively. An yield-per-recruit analysis showed that the current yield-per-recruit of about 8.30g with F=0.57/year and the age at first capture (t/sub c/) 2.69 year, was lower than the maximum possible yield-per-recruit of 9.60g. Fixing to at the current level and increased fishing intensity (F) could produce an increase in the predicted yield-per-recruit from 8.30g to about 9.40. However, estimated yield-per-recruit increased to 1.30g by decreasing to from the current age (2.69 year) to age two with F fixed at the current level. Yield-per-recruit was estimated under harvest strategies based on F/sub max/ and F/sub 0.1/.

  • PDF

Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science (근해 유자망에 의해 어획되는 참조기자원의 관리를 위한 가입당 산란자원량 모델의 비교분석)

  • LEE, Eun Ji;SEO, Young Il;PARK, Hee Won;KANG, Hee Joong;ZHANG, Chang Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.535-544
    • /
    • 2015
  • Yield per recruit model is the most popular method for fisheries stock assessment. However, stock assessment using yield per recruit model can lead to recruitment overfishing as this model only considers the maximum yield per recruit without spawning biomass for reproduction. For this reason, spawning biomass per recruit model which reveals variations of spawning stock biomass per fishing mortality (F) and age at first capture ($t_c$) is considered as more proper method for stock assessment. There are mainly two methods for spawning biomass per recruit model known as age specific selectivity method and knife-edged selectivity method. In the knife-edged selectivity method, the spawning biomass per recruit has been often calculated using biomass per recruit value by multiplying the maturity ratio of the recruited age. But the maturity ratio in the previous method was not considered properly in previous studies. Therefore, a new method of the knife-edged selectivity model was suggested in this study using a weighted average of the maturity ratio for ages from the first capture to the lifespan. The optimum fishing mortality in terms of $F_{35%}$ which was obtained from the new method was compared to the old method for small yellow croaker stock in Korea. The value of $F_{35%}$ using the new knife-edged selectivity model was 0.302/year and the value using the old model was 0.349/year. However, the value of $F_{35%}$ using the age specific selectivity model was estimated as 0.320/year which was closer to the value from the new knife-edged selectivity model.

Simulation-based Yield-per-recruit Analysis of Pacific Anchovy Engraulis japonicus in the Korea Strait with Varying Fisheries Regulations (모의실험을 통한 남해 멸치(Engraulis japonicus)의 어획조건에 따른 가입당 생산 분석)

  • Lee, Kyunghwan;Go, Seonggil;Jung, Sukgeun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.437-446
    • /
    • 2017
  • To evaluate the consequences of possible fisheries regulations of anchovy Engraulis japonicus in the Korea Strait, we developed and applied a simulation-based yield-per-recruit (Y/R) model that considered temperature-dependent growth and size-dependent mortality, covering the egg to adult stages. We projected changes in commercial yield and egg production of anchovy with respect to varying biological reference points of 1) the instantaneous fishing mortality, 2) the minimum fork length of anchovy allowed to catch for protecting smaller anchovy ($L_{c,min}$), and 3) the maximum fork length allowed to catch for protecting bigger anchovy ($L_{c,max}$). Our Y/R model showed that the anchovy yield will be maximized at ca. $1.4{\times}10^6tons$ when $L_{c,min}$ ranges between 42-60 mm or at ca. $0.8{\times}10^6tons$ when $L_{c,max}$ ranges from 88-160 mm. At $L_{c,min}=30mm$, the present minimum length of catch, our simulations indicated that the anchovy yield can reach a maximum of $1.2{\times}10^6tons$ in the long-term when the present fishing effort, which annually yields ca. $0.2{\times}10^6tons$ of anchovy, can be increased by a factor of 28. We expect that our simulation-based Y/R model can be applied to other commercially-important small pelagic species in which the traditional Beverton-Holt Y/R model is difficult to apply.

Management of small yellow croaker and hairtail in Korean waters using the length-based production value-per-recruit (PPR) analysis (체장기반 가입당생산액 분석에 의한 한국 연근해 참조기 Larimichthys polyactis 자원과 갈치 Trichiurus lepturus 자원의 관리)

  • Zhang, Chang-Ik;Kim, Hyun-A;Kang, Hee-Joong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.220-231
    • /
    • 2016
  • Yield-per-recruit (YPR) analysis is used to provide management guidance for the efficient use of a fish cohort. However, the individual fish price per unit weight of small yellow croaker (Larimichthys polyactis) or hairtail (Trichiurus lepturus) increases dramatically by size in Korea. Therefore, age-based production value-per-recruit (PPR) analysis has recently been developed (Zhang et al., 2014). Since age determination requires a substantial amount of money and time and it is even impossible for some fish species, it is difficult to obtain age information to apply the age-based PPR model. Thus, we attempted to develop an alternative method, which uses length data rather than age information, called the length-based PPR analysis. The results revealed that length-based PPR analysis was much more conservative for stock management than the YPR analysis. Furthermore, the PPR analysis was more economically beneficial than the YPR analysis, which can prevent the fish stock from the economic overfishing. In conclusion, the length-based PPR analysis could be a proper approach for stock assessment in the case that the individual fish price per unit weight increases dramatically by size, and this analysis is useful to obtain vital management parameters under data-deficient situation when traditional stock assessment methods are not applicable.

A Study on the Multi-gear and Multi-species Fisheries Assessment Models in Korean Waters I. Multi-species by a Single Gear (한국 근해 복수어구 및 다종어업 자원 평가모델 연구 I. 단일어구에 의한 다종자원의 이용)

  • SEO Young Il;ZHANG Chang Ik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.355-358
    • /
    • 2001
  • This paper presents case studies on the multi-species fisheries in Korean waters. Multi-species fisheries were divided into two types, that is, multi-species by a single fishery and single species by multiple fisheries. For the case of the multi-species by a single fishery, a multi-species yield-per-recruit model was applied to the Korean pair trawl fishery, which exploits demersal fishes such as, hairtail (Trichiurus lepturus), small yellow croaker (Pseudosciaena polyactis), white croaker (Argyrosomus argentatus) and pomfret (Pampus echinogaster). The overall fishing mortality ($F_x$) values for the multi-species was estimated and compared to the spawning potential ratio ($F_{x\%}$) val ues estimated from the spawning biomass-per-recruit model.

  • PDF

Fisheries Management of an Abalone Haliotis diversicolor in the Eastern Coastal Waters of Jeju Island using Yield-per-recruit Model (가입당생산량(yield-per-recruit) 모델을 이용한 제주 동부연안 오분자기류(Haliotis diversicolor)의 어업관리)

  • Ko, Joon-Chul;Yoo, Joon-Taek;Choi, Young-Min;Kim, Jae-Woo;Im, Yang-Jae
    • The Korean Journal of Malacology
    • /
    • v.24 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • We studied the management policy for Haliotis diversicolor fisheries in the coastal area of Sungsanpo using Yield-per-recruit model from 2004 to 2006. The age at first capture($t_c$) and fishing mortality(F) annually estimated during the study period decreased and increased, respectively. The maximum yield-per-recruit in 2004 was increased by increasing $t_c$ from the 2.012 year of current $t_c$ to 2.7 year or increasing F from the 0.574/year of current F to 0.800/year, and that in 2005 was increased by increasing $t_c$ from the 1.946 year of current $t_c$ to 2.5 year or increasing F from the 0.578/year of current F to 0.880/year. In 2006, the maximum yield-per-recruit was increased by increasing $t_c$ from the 1.926year of current $t_c$ to 3.1 year or decreasing F from the 1.088/year of current F to 0.810/year. Further, although the current F in 2004 and 2005 was lower than the estimated $F_{MAX}$, that in 2006 was higher than the estimated $F_{MAX}$. These results indicate that the likelihood of growth overfishing with increasing catch of smaller H. diversicolor in 2006 was greater than in 2004 and 2005. As action that could prevent growth overfishing in fisheries management of H. diversicolor, increasing for the current $t_c$ could be a more appropriate policy because the artificial decrease of the number of woman divers related F is actually difficult.

  • PDF

Stock Assessment and Management Implications of Small Yellow Croker in Korean Waters (한국 근해 참조기의 자원평가 및 관리방안)

  • ZHANG Chang Ik;KIM Suam;YOON Seong-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.282-290
    • /
    • 1992
  • Based on surplus production models using fishery data for the last 20 years, a stock assessment was conducted for the small yellow croaker in Korean waters. The maximum sustainable yields (MSY) from the Schaefer and Fox models were estimated to be 37,000 metric tons (mt) and 33,450 mt. Zhang's model using time-series biomass with instantaneous coefficients of fishing mortality (F) and using time-series biomass and catch yielded MSY estimates of 45,328 mt and 40,160 mt, respectively. A yield-per-recruit analysis showed that the current yield per recruit of about 20g with F= 1.11 $yr^{-l}$, where the age at first capture $(t_c)$ is 0.604, was much lower than the maximum possible yield per recruit of 43g. Fixing $t_c$ at the current level and reducing fishing intensity (F) from 1.11 $yr^{-l}$ to 0.4 $yr^{-l}$ yielded only a small increase in predicted yield per recruit, from 20 to 25g. However, estimated yield per recruit increased to 43g by increasing $(t_c)$ from the current age (0.604) to age three with F fixed at the current level. This age at first capture corresponded to the optimal length which was obtained from the $F_{0.1}$ method. According to the analysis of stock recovery strategies employing the Zhang model, the optimum equilibrium biomass $(B^*_{MSY})$ which produces the maximum yield could be achieved after approximately five years at the lower fishing intensity (F=0.5).

  • PDF

Simulation-based Yield-per-recruit Analysis of Chub Mackerel Scomber japonicus in Korean Waters (모의실험을 통한 한국 연근해 고등어(Scomber japonicus)의 가입당 생산 분석)

  • Lee, Kyunghwan;Go, Seonggil;Jung, Sukgeun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.3
    • /
    • pp.313-320
    • /
    • 2018
  • Chub mackerel Scomber japonicus is an economically important pelagic species in the western North Pacific. In the last 50 years, the annual total catch in Korean waters showed large fluctuations, ranging from 100 to $420{\times}10^3tons$. To provide a biological reference point for management of chub mackerel, we applied a simulation-based yield-per-recruit (Y/R) model that considered both temperature-dependent growth and size-dependent mortality. We estimated the fisheries yield with respect to varying biological reference points and environmental conditions, including 1) the instantaneous rate of fishing mortality (F), 2) length of fish at first capture ($L_c$), and 3) water temperature. The result of our analysis showed that the Y/R could be greatest when the $L_c$ ranges from 19-27 cm and F ranges from $1.48-2.00yr^{-1}$. Y/R increases with increased water temperature between 15 and $23^{\circ}C$. We suggest targeting an $L_c$ of 17 cm (age=0.6 years) under the assumed current of $F=0.48yr^{-1}$ for maximizing the chub mackerel harvest. Further analysis considering spawning and recruitment processes are required to provide biological reference points to ensure the sustainability of chub mackerel fisheries in Korean waters.

Simulation-based Yield-per-recruit Analysis of Sandfish Arctoscopus japonicus in the East Sea of Korea Subjected to Natural Mortality Conditions (모의실험을 통한 한국 동해 도루묵(Arctoscopus japonicus)의 자연사망 계수 조건에 따른 가입당 생산 분석)

  • Kyunghwan Lee;Ho Young Soh;Giphil Cho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.3
    • /
    • pp.331-340
    • /
    • 2023
  • To estimate the biological reference points, suitable for fisheries management of sandfish Arctoscopus japonicas in the East Sea of Korea, we simulated the yield-per-recruit (Y/R) from age 0 to 6 (0-2,555 days). The stimulation was based on two instantaneous natural mortality conditions: size-dependent (Mt, d-1) and constant (Mcons, d-1); Subsequently, the biological reference points of the two mortality conditions was compared. Mt decreased from 0.0075 d-1 to 0.0018 d-1 depending on growth, and Mcons remained constant at 0.0011 d-1 for all ages. Our Y/R model showed that the maximum yield of Mcons was 14 times higher than that of the Mt. The length at first capture to maximize the harvest at the F0.1 points of the two natural mortality conditions was Lc,t=10.2 cm (TL) and Lc,cons=17 cm (TL). We concluded that Mt was more suitable for estimating M than Mcons; this is because Lc,t showed minimal difference from the current fishing regulations (11 cm, TL), and Mt reflected more biological characteristics than Mcons. We suggest that 10.2 cm and 0.8 as the suitable length at first capture and corresponding age, respectively for efficient fisheries management of sandfish.

Stock assessment of starry flounder, Platichthys stellatus and olive flounder, Paralichthys olivaceus in the Uljin marine ranching area, Korea (울진 바다목장 강도다리 (Platichthys stellatus)와 넙치 (Paralichthys olivaceus)의 자원평가)

  • Yoon, Sang-Chul;Lee, Sung-Il;Yang, Jae-Hyeong;Yoon, Byoung-Sun;Kim, Jong-Bin;Cha, Hyung-Kee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.583-594
    • /
    • 2014
  • This study was performed to estimate biomass and provide management guidance through population ecological characteristics, including growth parameters, instantaneous coefficients of natural and fishing mortalities, and age at first capture of the starry flounder, Platichthys stellatus and olive flounder, Paralichthys olivaceus of Korea. For describing growth of this species, a von Bertalanffy growth model was adopted. The von Bertalanffy growth parameters estimated from a non-linear regression for starry flounder were $L_{{\infty}}=48.25cm$, K=0.16/yr, and $t_0=-1.48$, respectively and those for olive flounder were $L_{{\infty}}=86.46cm$, K=0.26/yr, and $t_0=-0.29$, respectively. Biomass of Platichthys stellatus was estimated by direct biomass estimation method was 2.6 M/T, that was estimated by indirect method was 13.4 M/Tt. Those of Paralichthys olivaceus were estimated as 10.1 M/T, 19.3 M/T, respectively. An yield per recruit analysis showed that the current yield per recruit on Platichthys stellatus was about 48.2 g with F=0.646/yr and the age at first capture ($t_c$) 1.35yr, that on Paralichthys olivaceus was about 167.6 g with F=1.121/yr and the age at first capture ($t_c$) 1yr.