• Title/Summary/Keyword: Z 계수

Search Result 279, Processing Time 0.029 seconds

Estimation of Z-R Relationships between Radar Reflectivity and Rainfall rate (레이더 반사강도와 강우강도의 Z-R 관계식 산정)

  • Ahn, Sang-Jin;Kim, Jin-Geuk
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2003
  • The purpose of this study is to estimate Z-R relationships of between radar reflectivity and rainfall rate. The Z-R relationships estimated that rainfall events are selected at Yeongchun water level station where the discharge recorded from 1,000cms to 8,519cms in chungju dam basin. The result of Z-R relationship distributed at thirty two raingage sites, the constant values of A and $\beta$ are distributed between 26.4 and 7.4, 0.9 and 1.56 respectively. The correlation coefficients of standard Z-R relationships(Z=200Rl.6)shows that 0.63 lower than each other raingage sites(0.65~0.748).

THE CHANGE OF THE INITIAL DYNAMIC VISCO-ELASTIC MODULUS OF COMPOSITE RESINS DURING LIGHT POLYMERIZATION (광중합 복합레진의 중합초기 동적 점탄성의 변화)

  • Kim, Min-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.450-459
    • /
    • 2009
  • The aim of this study was to measure the initial dynamic modulus changes of light cured composites using a custom made rheometer. The custom made rheometer consisted of 3 parts: (1) a measurement unit of parallel plates made of glass rods, (2) an oscillating shear strain generator with a DC motor and a crank mechanism, (3) a stress measurement device using an electromagnetic torque sensor. This instrument could measure a maximum torque of 2Ncm, and the switch of the light-curing unit was synchronized with the rheometer. Six commercial composite resins [Z-100 (Z1), Z-250 (Z2), Z-350 (Z3), DenFil (DF), Tetric Ceram (TC), and Clearfil AP-X (CF)] were investigated. A dynamic oscillating shear test was undertaken with the rheometer. A certain volume ($14.2\;mm^3$) of composite was loaded between the parallel plates, which were made of glass rods (3 mm in diameter). An oscillating shear strain with a frequency of 6 Hz and amplitude of 0.00579 rad was applied to the specimen and the resultant stress was measured. Data acquisition started simultaneously with light curing, and the changes in visco-elasticity of composites were recorded for 10 seconds. The measurements were repeated 5 times for each composite at $25{\pm}0.5^{\circ}C$. Complex shear modulus G*, storage shear modulus G', loss shear modulus G" were calculated from the measured strain-stress curves. Time to reach the complex modulus G* of 10 MPa was determined. The G* and time to reach the G* of 10 MPa of composites were analyzed with One-way ANOVA and Tukey's test ($\alpha$ = 0.05). The results were as follows. 1. The custom made rheometer in this study reliably measured the initial visco-elastic modulus changes of composites during 10 seconds of light curing. 2. In all composites, the development of complex shear modulus G* had a latent period for $1{\sim}2$ seconds immediately after the start of light curing, and then increased rapidly during 10 seconds. 3. In all composites, the storage shear modulus G" increased steeper than the loss shear modulus G" during 10 seconds of light curing. 4. The complex shear modulus of Z1 was the highest, followed by CF, Z2, Z3, TC and DF the lowest. 5. Z1 was the fastest and DF was the slowest in the time to reach the complex shear modulus of 10 MPa.

The Correlation Analysis and Correction factor of BMD in Forearm and Lumbar with DXA (DXA를 이용한 전완부와 요추부 골밀도 검사의 보정계수 및 상관관계 연구)

  • Han, Man-Seok
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.551-556
    • /
    • 2013
  • The Forearm and the lumbar spine bone mineral density bone mineral density values obtained through, T-score and Z-score correlation between numerical and calibration function obtained as a result of any one part to another part of the results is intended to infer. Groups of 66 patients, 11 patients by age 20-70 were composed of patients measured with the forearm and lumbar spine bone mineral density T-score and Z-score of the survey for each of the three factors that correlated to assess the correlation Find the correction factor to obtain the relationship. Bone mineral density of the correlation coefficient R = 0.769 correction factor is Y = 1.541X + 0.133. T-score of correlation coefficient R = 0.768 and the correction factor Y = 0.715X - 0.4 is Z-score of the correlation coefficient R = 0.635 correction factor Y = 0.751X - 0.162. It is regarded that there will be a clinical availability which can analogize the result of a part by using the result of the other part.

분자동역학 모의실험을 이용한 Lennard-Johns 입자계의 확산계수 계산

  • Jeong, Gu-Hwan
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.171-176
    • /
    • 2015
  • 일반적으로 어떠한 계의 크기가 커지면 확산계수 (Diffusion coefficient, D) 는 증가하는 것으로 알려져 있다. 본 연구에서는 원자의 개수와 계의 크기를 증가시키면서 정방계와 직방계에서의 확산계수를 계산하였다. 확산계수를 계산하는 방법으로 Einstein-Smoluchowski 관계식을 사용하였다. 정방계에서 x, y, z축의 확산계수를 계산해본 결과, 계의 크기와 원자의 개수가 증가할 때 각 축의 확산계수도 같이 증가하는 것을 확인할 수 있었다. 그리고 직방계에서 x, y축의 셀 길이를 고정시키고 z축의 셀 길이를 늘여가며 확산계수를 계산해본 결과, x, y축의 확산계수는 정방계와 비슷하게 증가하는 경향을 보였으나 z축의 확산계수는 변화가 거의 없음을 확인할 수 있었다.

  • PDF

Excursion-Set Modeling of the Splashback Mass Function and its Cosmological Usefulness (Splashback 질량함수의 Excursion-Set Modeling과 우주론적 유용성)

  • Ryu, Suho;Lee, Jounghun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.44.3-45
    • /
    • 2021
  • 일반화된 excursion set 이론과 자기 유사 구형 유입(Self-similar spherical infall) 모형에 기반하여 Splashback 질량함수에 대한 해석적 단일 매개변수 모델을 착안하였다. Planck/WMAP7 관측결과를 토대로 구축된 EREBOS N-Body 시뮬레이션의 수치적 결과의 해석적 모델을 이용한 회귀분석을 통해 단일 매개변수이자 Splashback 경계의 확산적 특성을 수치화하는 확산계수(Diffusion Coefficient)의 추정치를 계산하였다. 계산된 확산계수를 적용한 해석적 모델과 수치적 결과가 5 ≤ M/(1012h-1 M) < 103의 질량범위에서 매우 근접히 일치하는 것을 보였으며 Baysian and Akaike Information Criterion 검정을 통해 0.3 ≤ z ≤ 3의 범위에서 기존의 모델들보다 본 모델이 선호 돼야함을 확인하였다. 또한 확산계수가 적색편이에 대하여 선형진화에 근접한 변화를 보임을 발견하였으며, 특정 임계 적색편이(zc)를 기준으로 확산계수가 0에 수렴함을 발견하였다. 더 나아가 두 Planck모델과 WMAP7모델에서 도출된 확산계수는 서로 상당한 차이를 보였다. 이 결과는 암흑물질 헤일로의 splashback 질량함수가 z ≥ zc에서 매개변수가 없는 온전한 해석적 모델로 설명되고 zc가 독립적으로 우주의 초기조건을 독립적으로 특정지을 수 있는 가능성을 지님을 시사한다. 이 초록은 The Astrophysical Journal의 Ryu & Lee 2021, ApJ, 917, 98 (arxiv:2103.00730) 논문을 바탕으로 작성되었다.

  • PDF

Characteristics of Poly(methylphenyl)silane Photoreists (Poly(methylpheny) Silane Photoresist의 특성)

  • Kang, Doo-Whan;Chung, Nak-Jin
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.161-167
    • /
    • 1990
  • Polymethylphenylsilane(PMPS) was synthesized with methylphenyldichlorosilane using metal sodium. Various sample coated on quartz plate were exposed and the yield of residual film was calculated. To obtain the fine image forming after developing and drying, optical transmittance characterization have to be considered. Exposure is described by three optical parameters X, Y, and Z. There parameters are normally determined from optical transmittance measurements of exposed PMPS films. Z parameter was determined from the initial slope of a transmittance according to exposure time. This set of function parameters provided a complete description of photoresist exposure and development and became the basis for the theoretical process models.

  • PDF

ESTIMATION OF THE SURVIVAL RATE IN FISH POPULATION FROM THE LENGTH COMPOSITION AND THE GROWTH EQUATION1 (체장조성과 성장곡선식에서 생잔율을 추정하는 방법)

  • SHIN Sang Taek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.137-143
    • /
    • 1977
  • A study has been made to find out a new method of calculating the survival rate of a fish population from length composition and growth equation. 1. In the steady state of the fish population, let the total mortality rate be z, the age of complete recruitment $\alpha$, and the number of $\chi$ year class $N_\chi$. Then ire obtain $$N\chi=N\alpha\;\exp\;{-z(\chi-\alpha)}$$ Let the oldest age in the catch be h, the average age between the age of complete recruitment and the oldest age in the catch $U\chi$. Then we have $$U\chi=\frac{a-b\;\exp\;(-z(b-a))}{1-\exp\;(-z(b-a))}+\frac{1}{z}....(1)$$ and then let be infinite. Then we obtain $$Z=\frac{1}{U\chi-\alpha....(2)$$ 2. Calculating numerical value of $U\chi$ from age composition table and growth equation and substitute in (1) or (2) for it, we may obtain the value of s and $\varrho^{-z}$. 3. This method is applied t a case of yellow croaker in the Yellow Sea and the East China Sea. The results are as follows: Total mortality rate 0.82595 Survival rate 0.43782 95 percent confidence interval 0.43767-0.43797.

  • PDF

Boundary element analysis of stress intensity factors for Z-shaped cracks (Z형상 균열의 응력세기계수에 대한 경계요소 해석)

  • 이강용;원동성;최형집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1987
  • Stress intensity factors are computed by the boundary element method employing the multiregion technique along with the double-point concept. To demonstrate the validity of the current method, the stress intensity factors of the well-known simple models such as a slanted edge crack and an arcular crack are determined, in advanced, which are proved to be in good agreement within 5% with the pre-existing solutions. Z-shaped cracks are analyzed with various branch crack lengths and branching angles.

Estimation of the Survival Rate in Fish Population -Mackerel and Horse Mackerel in the Coastal Waters of Korea- (어획대상 어류의 생잔율 추정 -한국 연안의 고등어, 전갱이-)

  • SHIN Sang-Taek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.253-259
    • /
    • 1981
  • A study was made to find out a new method of calculating the survival rate of a fish population from length composition and growth equation. 1. In the steady state of the fish population, let the total mortality rate be z, the age of complete recruitment a, the oldest age in the catch b and the average between the age of complete recruitment and the oldest age in the catch Ut, then we have $$U_{t}\;=\;\frac{a-b\;{e xp}\{-z(b-a)\}}{1-\;{e xp}\{-z(b-a)\}}+\frac{1}{z}{\cdots}{\cdots}{\cdots}{\cdots}{\cdots}$$(1) And let b be infinite, then we obtain $$Z=\frac{1}{U_t-a}{\cdots}{\cdots}{\cdots}{\cdots}{\cdots}{\cdots}$$ (2) 2. Calculating numerical value of $U_t$ from age composition table and growth equation, and substitute in (1) for it, we may obtain the value of z and $e^{-z}$. 3. This method is applied to a case of mackerel and horse mackerel in the coastal waters of Korea, with the following results : Total mortality rate-Mackerel : 0.87909, Horse mackerel : 2.22327, Survival rate-Mackerel : 0.41516, Horse Mackerel : 0.10825, 95 percent confidence Interval of survival rate-Mackerel : $0.35966{\sim}0.47264$, Horse mackerel : $0.06897{\sim}0.14974$

  • PDF

APPROXIMATE ESTIMATION OF RECRUITMENT IN FISH POPULATION UTILIZING STOCK DENSITY AND CATCH (밀도지수와 어획량으로서 수산자원의 가입량을 근사적으로 추정하는 방법)

  • KIM Kee Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.2
    • /
    • pp.47-60
    • /
    • 1975
  • For the calculation of population parameter and estimation of recruitment of a fish population, an application of multiple regression method was used with some statistical inferences. Then, the differences between the calculated values and the true parameters were discussed. In addition, this method criticized by applying it to the statistical data of a population of bigeye tuna, Thunnus obesus of the Indian Ocean. The method was also applied to the available data of a population of Pacific saury, Cololabis saira, to estimate its recuitments. A stock at t year and t+1 year is, $N_{0,\;t+1}=N_{0,\;t}(1-m_t)-C_t+R_{t+1}$ where $N_0$ is the initial number of fish in a given year; C, number o: fish caught; R, number of recruitment; and M, rate of natural mortality. The foregoing equation is $$\phi_{t+1}=\frac{(1-\varrho^{-z}{t+1})Z_t}{(1-\varrho^{-z}t)Z_{t+1}}-\frac{1-\varrho^{-z}t+1}{Z_{t+1}}\phi_t-a'\frac{1-\varrho^{-z}t+1}{Z_{t+1}}C_t+a'\frac{1-\varrho^{-z}t+1}{Z_{t+1}}R_{t+1}......(1)$$ where $\phi$ is CPUE; a', CPUE $(\phi)$ to average stock $(\bar{N})$ in number; Z, total mortality coefficient; and M, natural mortality coefficient. In the equation (1) , the term $(1-\varrho^{-z}t+1)/Z_{t+1}$s almost constant to the variation of effort (X) there fore coefficients $\phi$ and $C_t$, can be calculated, when R is a constant, by applying the method of multiple regression, where $\phi_{t+1}$ is a dependent variable; $\phi_t$ and $C_t$ are independent variables. The values of Mand a' are calculated from the coefficients of $\phi_t$ and $C_t$; and total mortality coefficient (Z), where Z is a'X+M. By substituting M, a', $Z_t$, and $Z_{t+1}$ to the equation (1) recruitment $(R_{t+1})$ can be calculated. In this precess $\phi$ can be substituted by index of stock in number (N'). This operational procedures of the method of multiple regression can be applicable to the data which satisfy the above assumptions, even though the data were collected from any chosen year with similar recruitments, though it were not collected from the consecutive years. Under the condition of varying effort the data with such variation can be treated effectively by this method. The calculated values of M and a' include some deviation from the population parameters. Therefore, the estimated recruitment (R) is a relative value instead of all absolute one. This method of multiple regression is also applicable to the stock density and yield in weight instead of in number. For the data of the bigeye tuna of the Indian Ocean, the values of estimated recruitment (R) calculated from the parameter which is obtained by the present multiple regression method is proportional with an identical fluctuation pattern to the values of those derived from the parameters M and a', which were calculated by Suda (1970) for the same data. Estimated recruitments of Pacific saury of the eastern coast of Korea were calculated by the present multiple regression method. Not only spring recruitment $(1965\~1974)$ but also fall recruitment $(1964\~1973)$ was found to fluctuate in accordance with the fluctuations of stock densities (CPUE) of the same spring and fall, respectively.

  • PDF