• Title/Summary/Keyword: Z-value

Search Result 1,100, Processing Time 0.027 seconds

Measuring the matter energy density and Hubble parameter from Large Scale Structure

  • Lee, Seokcheon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2013
  • We investigate the method to measure both the present value of the matter energy density contrast and the Hubble parameter directly from the measurement of the linear growth rate which is obtained from the large scale structure of the Universe. From this method, one can obtain the value of the nuisance cosmological parameter $\Omo$ (the present value of the matter energy density contrast) within 3% error if the growth rate measurement can be reached $z >3.5$. One can also investigate the evolution of the Hubble parameter without any prior on the value of $H_0$ (the current value of the Hubble parameter). Especially, estimating the Hubble parameter are insensitive to the errors on the measurement of the normalized growth rate $f \sigma_8$. However, this method requires the high $z$ ($z >3.5$) measurement of the growth rate in order to get the less than 5% errors on the measurements of $H(z)$ at $z \leq 1.2$ with the redshift bin $\Delta z = 0.2$. Thus, this will be suitable for the next generation large scale structure galaxy surveys like WFMOS and LSST.

  • PDF

VALUE DISTRIBUTION OF SOME q-DIFFERENCE POLYNOMIALS

  • Xu, Na;Zhong, Chun-Ping
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.29-38
    • /
    • 2016
  • For a transcendental entire function f(z) with zero order, the purpose of this article is to study the value distributions of q-difference polynomial $f(qz)-a(f(z))^n$ and $f(q_1z)f(q_2z){\cdots}f(q_mz)-a(f(z))^n$. The property of entire solution of a certain q-difference equation is also considered.

VALUE SHARING RESULTS OF A MEROMORPHIC FUNCTION f(z) AND f(qz)

  • Qi, Xiaoguang;Liu, Kai;Yang, Lianzhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1235-1243
    • /
    • 2011
  • In this paper, we investigate sharing value problems related to a meromorphic function f(z) and f(qz), where q is a non-zero constant. It is shown, for instance, that if f(z) is zero-order and shares two valves CM and one value IM with f(qz), then f(z) = f(qz).

TRIPLE POSITIVE SOLUTIONS OF SECOND ORDER SINGULAR NONLINEAR THREE-POINT BOUNDARY VALUE PROBLEMS

  • Sun, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.763-772
    • /
    • 2010
  • This paper deals with the existence of triple positive solutions for the nonlinear second-order three-point boundary value problem z"(t)+a(t)f(t, z(t), z'(t))=0, t $\in$ (0, 1), $z(0)={\nu}z(1)\;{\geq}\;0$, $z'(\eta)=0$, where 0 < $\nu$ < 1, 0 < $\eta$ < 1 are constants. f : [0, 1] $\times$ [0, $+{\infty}$) $\times$ R $\rightarrow$ [0, $+{\infty}$) and a : (0, 1) $\rightarrow$ [0, $+{\infty}$) are continuous. First, Green's function for the associated linear boundary value problem is constructed, and then, by means of a fixed point theorem due to Avery and Peterson, sufficient conditions are obtained that guarantee the existence of triple positive solutions to the boundary value problem. The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.

UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE OPERATORS OF ENTIRE FUNCTIONS

  • Xinmei Liu;Junfan Chen
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.43-65
    • /
    • 2023
  • In this paper, by using the difference analogue of Nevanlinna's theory, the authors study the shared-value problem concerning two higher order difference operators of a transcendental entire function with finite order. The following conclusion is proved: Let f(z) be a finite order transcendental entire function such that λ(f - a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satisfies ρ(a(z)) < 1, and let 𝜂(∈ ℂ) be a constant such that ∆𝜂n+1 f(z) ≢ 0. If ∆𝜂n+1 f(z) and ∆𝜂n f(z) share ∆𝜂n a(z) CM, where ∆𝜂n a(z) ∈ S ∆𝜂n+1 f(z), then f(z) has a specific expression f(z) = a(z) + BeAz, where A and B are two non-zero constants and a(z) reduces to a constant.

Studies for the osmotic parameter of liposomes

  • Yu, Byung-Sul;Seo, Weon-Gyo;Jeon, Young-Ho
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.94-99
    • /
    • 1987
  • By using the former equation (8), we modified the equation which can show the dissimilar osmotic behavior of liposome with composition change. The slope of the new equation was presented as the ratio of osmotically active volume (V$_{act}$= ) to the total volume (V$_{totel}$= $_{acl}$+ V$_{dead}$ ; V$_{dead}$ is osmotically inactive volume) of loposomes, we defined is as a Z-value, which can elucidate the dissimilarity of the osmotic activity of multilamellar liposomes with the change of phospholipid composition and the differences of physicochemical properties of liposomes. Z-value was applied for studying the physico-chemical properties of liposomal membrane. The factor that affects on the Z-value was not the lipid concentration of liposome stock dispersion but the lipid composition of liposomal membrane. As the content of dicetylphosphate, the negative charged phospholipid, was increased, the osmotic activity, represented by Z-value, of multilamellar liposome was decreased. Using the hypertonic conditions (shrinking region), Z-value steadily increased and reached a maximum at 10 mole percent cholesterol with increasing the cholesterol content.

  • PDF

Contact treatment algorithm of z-map model with vertical walls and its application to the deep drawing of a clover shaped cup (Z-map으로 표현된 수직 벽면을 가진 금형에서의 접촉처리법과 클로버형 컵 디프드로잉 공정의 해석에의 응용)

  • 서의권;박정환;심현보
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.38-45
    • /
    • 1998
  • The Z-map model which is quite similar to the non-parametric patch is widely used to describe the shape of a surface because of its simplicity. Despite the inherent advantage of z-map model. it has drawbacks that there exists difficulty in expressing the vertical walls and its related contact treatment method. In the region of vertical walls, there is a convergence problem in searching the contact point. In this study a contact point finding scheme is presented, based on the z value of the z-map model on the sheet normal direction. To show the utility of this scheme a compared with the experimental results. The effects of the Z-map grid distances and the interpolations of the inside Z-map value are also discussed.

  • PDF

PICARD VALUES AND NORMALITY CRITERION

  • Fang, Ming-Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.379-387
    • /
    • 2001
  • In this paper, we study the value distribution of meromorphic functions and prove the following theorem: Let f(z) be a transcendental meromorphic function. If f and f'have the same zeros, then f'(z) takes any non-zero value b infinitely many times.

  • PDF

THE GROWTH OF SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENT HAVING FINITE DEFICIENT VALUE

  • Zhang, Guowei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1495-1506
    • /
    • 2021
  • The growth of solutions of second order complex differential equations f" + A(z)f' + B(z)f = 0 with transcendental entire coefficients is considered. Assuming that A(z) has a finite deficient value and that B(z) has either Fabry gaps or a multiply connected Fatou component, it follows that all solutions are of infinite order of growth.

GROWTH OF SOLUTIONS OF NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

  • Pramanik, Dilip Chandra;Biswas, Manab
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • In this paper, we investigate the growth properties of solutions of the non-homogeneous linear complex differential equation L(f) = b (z) f + c (z), where L(f) is a linear differential polynomial and b (z), c (z) are entire functions and give some of its applications on sharing value problems.