• Title/Summary/Keyword: Zero-Energy Home

Search Result 25, Processing Time 0.033 seconds

Thermal Performance Analysis of Renewable Hybrid heat Supply System for Zero Carbon Green Home of Apartment (공동주택의 제로카본 그린홈을 위한 신재생에너지 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.451-456
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000 kacal/hr, a evacuated tubular solar collector 3.74 $m^2$ of aperture area at the $20^{\circ}$ install angle, a 0.3 $m^3$ hot water storage tank, a 0.15 $m^3$ hot water storage tank for space heating. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

  • PDF

ENERGY ANALYSIS UTILIZING BIM FOR ZERO NET ENERGY TEST HOME

  • Cho, Yong K.
    • Journal of KIBIM
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 2012
  • This paper presents the results of a theoretical energy analysis of a research test bed called the Zero Net Energy Test House (ZNETH) in Omaha, Nebraska in U.S.A. The ZNETH project is being designed and built with the goal of consuming a negligible amount of energy by offsetting remaining usage after energy conservation. The theoretically consumed and generated energy levels were analyzed using energy modeling software programs. By integrating a highly graphical and intuitive analysis with a Building Information Model(BIM) of the house, this investigation introduces strategies to include sustainable materials and systems to predict energy generation with a case study of ZNETH. In addition, this paper introduces parametric analyses for better envelope design and construction material selection by analyzing simulated energy consumption with various parametric inputs, e.g., material types, location, and size. It was found that the current design of ZNETH does not meet its goal of zero net energy. Sugeestions are presented to assist ZHETH in meeting its net zero energy goal.

Thermal Performance Analysis of Hybrid heat Supply System for Zero Carbon Green Home (제로카본 그린홈 구현을 위한 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000kcal/hr, a $0.15m^3$ hot water storage tank for space heating, a evacuated tubular solar collector $3.74m^2$ of aperture area at the $20^{\circ}$ install angle, a $0.3m^3$ hot water storage tank. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

Suggestion of the Characteristics of Element Technology and the Standard Model through the Comparison of Domestic Zero-energy Houses (국내 에너지제로하우스 비교를 통한 요소기술 특성 및 표준 모델 제시에 관한 연구)

  • Lee, Chung-Kook;Lee, Jeong-Cheol;Kim, Sang-Su;Suh, Seung-Jik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.27-35
    • /
    • 2012
  • Five zero energy house models developed in Korea for the purpose of the energy performance were compared and analyzed in the study. The standard passive house model applying common technology and efficient energy performance elements was proposed. Standard passive house 5 models have been developed commonly aiming at 100% energy saving, applying high-performance and high-efficiency exterior thermal insulation, using 3 low-e coated window system, and targeting average 0.65 ACH to enhance privacy. Energy recovery ventilators and dry and cold radiant heating floor has been partially applied. Eco-design techniques such as the awning device, heat insulating door, using natural light have been used. Solar and geothermal systems as the application of renewable energy technologies have been commonly applied. And fuel cells were applied to a partial model. The standard model based on common technical elements and average performance of each element and obtained from five model analysis has been proposed in the study.

BIM-DRIVEN ENERGY ANALYSIS FOR ZERO NET ENERGY TEST HOME (ZNETH)

  • Yong K. Cho;Thaddaeus A. Bode;Sultan Alaskar
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.276-284
    • /
    • 2009
  • As an on-going research project, Zero Net Energy Test Home (ZNETH) project investigates effective approaches to achieve whole-house environmental and energy goals. The main research objectives are (1) to identify energy saving solutions for designs, materials, and construction methods for the ZNETH house and (2) to verify whether ZNETH house can produce more energy than the house uses by utilizing Building Information Modeling (BIM) and energy analysis tools. The initial project analysis is conducted using building information modeling (BIM) and energy analysis tools. The BIM-driven research approach incorporates architectural and construction engineering methods for improving whole-building performance while minimizing increases in overall building cost. This paper discusses about advantages/disadvantages of using BIM integrated energy analysis, related interoperability issues between BIM software and energy analysis software, and results of energy analysis for ZNETH. Although this investigation is in its early stage, several dramatic outcomes have already been observed. Utilizing BIM for energy analysis is an obvious benefit because of the ease by which the 3D model is transferred, and the speed that an energy model can be analyzed and interpreted to improve design. The research will continue to use the ZNETH project as a testing bed for the integration of sustainable design into the BIM process.

  • PDF

An Evaluation of Indoor Thermal Environment for Zero-Carbon Green Home according to the Operation Conditions in Summer (제로카본 그린홈의 여름철 운영조건에 따른 실내 열환경 평가)

  • Yu, Jung yeon;Cho, Dong woo;Kim, Kee Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.25-36
    • /
    • 2020
  • The Korean government has a plan to mandate zero-energy buildings in 2020 for public and 2025 for private buildings. In order to design a zero-energy building, insulation and airtightness, which are the most basic elements of passive house technology, are required, and the government has been accomplished this through step-by-step strengthening of related standards. In passive house with high thermal insulation and airtightness performance, the heat introduced into the building through solar radiation can be stored for a long time to keep the inside warm during winter. On the other hand, during summer, heat introduced into the building cannot be easily released to outside, so it is necessary to actively block solar radiation and high temperature outdoor air to prevent an increase of indoor temperature. Therefore, this study aims to derive an appropriate operation condition of passive house to maintain the indoor temperature at an suitable level according to the ventilation methods and solar shading conditions. As a result, under the conditions that the outdoor temperature was 28℃ or less, the ventilation using a heat recovery ventilation system at daytime and natural ventilation at nighttime were selected for the most appropriate operation method. In addition, in the case of solar shading, it was found that blocking solar radiation at daytime using the blind and open the blind at nighttime to ensure natural ventilation were selected for the most appropriate solar shading condition.

Electric Load Signature Analysis for Home Energy Monitoring System

  • Lu-Lulu, Lu-Lulu;Park, Sung-Wook;Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2012
  • This paper focuses on identifying which appliance is currently operating by analyzing electrical load signature for home energy monitoring system. The identification framework is comprised of three steps. Firstly, specific appliance features, or signatures, were chosen, which are DC (Duty Cycle), SO (Slope of On-state), VO (Variance of On-state), and ZC (Zero Crossing) by reviewing observations of appliances from 13 houses for 3 days. Five appliances of electrical rice cooker, kimchi-refrigerator, PC, refrigerator, and TV were chosen for the identification with high penetration rate and total operation-time in Korea. Secondly, K-NN and Naive Bayesian classifiers, which are commonly used in many applications, are employed to estimate from which appliance the signatures are obtained. Lastly, one of candidates is selected as final identification result by majority voting. The proposed identification frame showed identification success rate of 94.23%.

A Study on Zero Energy House Model of Housing Complex (주택 단지 제로 에너지 하우스 모델에 관한 연구)

  • Huh, Myung Hoi;Shin, shung jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.121-126
    • /
    • 2020
  • In many parts of the world, climate warming has caused tremendous environmental disasters to repeat every year. Overuse of fossil fuels, the main source of energy, has affected the global environment, destroying the global ecosystem and depleting resources. To overcome this, efforts to reduce carbon emissions through the development of renewable energy are being actively studied at home and abroad. Already, new technologies are being reported abroad to reduce carbon emissions. Zero Energy House is a model that reduces low carbon emissions and energy use due to the use of high-density materials for high-heated materials, and can live in real life by receiving the minimum required energy through renewable energy. Although the government is trying to apply this in Korea, it is difficult to become common because of the lack of economic feasibility. The purpose of this study is to study models that can zero carbon emissions, which are eco-friendly elements, secure construction economy of zero energy house by using ventilation system, heat exchanger and energy storage system for public use, and attach automation system to window opening/closing to maintain indoor temperature.

Analysis of Energy Saving Effect of the Residential BESS Connected to the Balcony-PV in Apartment Houses (공동주택 발코니 PV 연계 가정용 BESS의 에너지 절감 효과 분석)

  • Kim, Cha-Nyeon;Eum, Ji-Young;Kim, Yong-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.3
    • /
    • pp.21-31
    • /
    • 2020
  • The government mandates gradually zero energy building and Photovoltaic power generation systems installed in buildings are emerging as the most realistic alternative to increase the independence rate of building energy. In this study, we propose a method to reduce the power consumption of households by increasing the PV capacity of balconies and applying the method used the charged electric power stored in batteries after sunset. In order to evaluate the electric power energy savings of the residential BESS, a balcony PV 1.2 kW and a battery pack 2 kWh were installed for 9 houses in 4 apartments in Seoul and Gyeonggi-do. The BESS is charged when the balcony PV is generated electric power, and when solar power generation is finished, it supplies power to the electric appliances connected to the load. As a result of installing the solar PV module 1.2 kW and 2 kWh class BESS for 3 households located in Seoul and Gyeonggi-do, the average electric power consumption saving rate was 40%. The reduction in electricity consumption in the case of zero generation surplus power by maximizing the utilization rate of BESS has been improved to about 53%. Therefore, in order to increase the self-sufficiency rate of electric energy in apartment houses, it is effective to increase the solar photovoltaic capacity of the balcony and apply the residential BESS. In the future, it is believed that the balcony PV and home BESS will play a key role in achieving mandatory zero-energy housing.

A Study on the Simulation Methodology of Home Appliance Control and Load Experiment for the Development of All-electric House Load Models (전기에너지주택 부하모델 개발을 위한 가전기기 제어 시뮬레이션 및 부하실험에 관한 연구)

  • Hwang, Sung-Wook;Kim, Kang-Sik;Nah, Hwan-Seon;Park, Hyeon-Jeong;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1451-1459
    • /
    • 2011
  • Recently, low energy houses have become an essential issue globally and various subsidy programs are ongoing to penetrate. All-electric houses which are another type of low energy houses or zero carbon houses are being developed. These houses consider new & renewable energy and demand side management programs in the construction and the diffusion process because these programs are essential policies to use energy resources reasonably. This paper shows a simulation methodology to control home appliances in all-electric houses considering the electricity consumption pattern of residents. The simulation is a first step to estimate energy saving of the house in a practical manner.