• Title/Summary/Keyword: ZnO Nanoparticles

Search Result 239, Processing Time 0.031 seconds

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Size Control and Optical Properties of ZnO nanoparticles by Zinc-Lithium-Acetate System (Zinc-Lithium-Acetate System을 통한 ZnO 분말 크기제어 및 광학 특성 연구)

  • Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.371-375
    • /
    • 2013
  • ZnO nanoparticles in the size range from 5 to 15 nm were prepared by zinc-lithium-acetate system. The morphologies and structures of ZnO were characterized by TEM, XRD and FT-IR spectra. UV-visible results shows that the absorption of ZnO nanoparticles is blue shifted with decrease in particles size. Furthermore, photoluminescence spectra of the ZnO nanoparticles were also investigated. The ZnO nanoparticles have strong visible-emission intensity and their intensities depend upon size of ZnO nanoparticles.

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Biosynthesis of Zinc Oxide Nanoparticles and Structural Characterization and Antibacterial Performance (바이오 합성법으로 제조된 ZnO 나노입자의 구조 분석 및 항박테리아 거동)

  • Suresh, Joghee;Song, Jae Sook;Hong, Sun Ig
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.252-261
    • /
    • 2020
  • We prepare ZnO nanoparticles by environmentally friendly synthesis using Cyathea nilgiriensis leaf extract. Various phytochemical constituents are identified through the assessment of ethanolic extract of plant Cyathea nilgiriensis holttum by GC-MS analysis. The formation of ZnO nanoparticles is confirmed by FT-IR, XRD, SEM-EDX, TEM, SAED and PSA analysis. TEM observation reveals that the biosynthesized ZnO nanopowder has a hexagonal structure. The calculated average crystallite size from the high intense plane of (1 0 1) is 29.11 nm. The particle size, determined by TEM analysis, is in good agreement with that obtained by XRD analysis. We confirm the formation of biomolecules in plant extract by FT-IR analysis and propose a possible formation mechanism of ZnO nanoparticles. Disc diffusion method is used for the analyses of antimicrobial activity of ZnO nanoparticles. The synthesized ZnO nanoparticles exhibit antimicrobial effect in disc diffusion experiments. The biosynthesized ZnO nanoparticles display good antibacterial performance against B. subtilis (Gram-positive bacteria) and K. pneumonia (Gram-negative bacteria). Bio-synthesized nanoparticles using green method are found to possess good antimicrobial performance.

Photocatalytic Degradation of 3-Nitrophenol with ZnO Nanoparticles under UV Irradiation

  • Li, Jiulong;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.131-135
    • /
    • 2017
  • Zinc nitrate hexahydrate [$Zn(NO_3){\cdot}6H_2O$] and sodium hydroxide [NaOH] were used as source reagents in the preparation of ZnO nanoparticles in an aqueous solution containing deionized water and ethanol in a ratio of 2:5 (v/v). ZnO nanoparticles were heated in an electric furnace at $700^{\circ}C$ for 2 h under an atmosphere of inert argon gas. The morphological and structural properties of the nanoparticles were characterized by scanning electron microscopy (SEM) and powder X-ray diffractometry (XRD). UV-vis spectrophotometry was used to analyze the photocatalytic degradation of 3-nitrophenol with ZnO nanoparticles as photocatalyst under ultraviolet irradiation at 254 nm. Evaluation of the kinetic of the photo-catalytic degradation of 3-nitrophenol indicated that the degradation of 3-nitrophenol with ZnO nanoparticles obeyed the pseudo-first order reaction rate model.

Synthesis of direct-patternable ZnO film incorporating Pt Nanoparticles

  • Choi, Yong-June;Park, Hyeong-Ho;Reddy, A.Sivasankar;Park, Hyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.369-369
    • /
    • 2007
  • ZnO film has been investigated during several decades because it has excellent optical property like a transmittance among the range of visible light for using transparent conducting oxide (TCO) films. But ZnO film has not enough conductivity for applying to TCO devices. Therefore we synthesized platinum nanoparticles and they incorporated into ZnO due to improve the electrical property of ZnO film by sol-gel synthesis method. Also, we fabricated photosensitive ZnO thin film containing Pt nanoparticles by sol-gel process and spin-coating for using photochemical solution deposition. Photosensitive ZnO film could carry out the direct-pattern which allow the etching process to be convenient. The optical and electrical properties of ZnO film with or without various atomic percent of Pt nanoparticles annealed at various temperatures were investigated by using UV-Vis spectroscopy and 4-point probe method, respectively. We characterized the ZnO thin film containing Pt nanoparticles using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.

  • PDF

Synthesis, characterization and potential applications of Ag@ZnO nanocomposites with S@g-C3N4

  • Ahmad, Naveed;Javed, Mohsin;Qamar, Muhammad A.;Kiran, Umbreen;Shahid, Sammia;Akbar, Muhammad B.;Sher, Mudassar;Amjad, Adnan
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.225-235
    • /
    • 2022
  • It includes the synthesis of pristine ZnO nanoparticles and a series of Ag-doped zinc oxide nanoparticles was carried out by reflux method by varying the amount of silver (1, 3, 5, 7 and 9% by mol.). The morphology of these nanoparticles was investigated by SEM, XRD and FT-IR techniques. These techniques show that synthesized particles are homogenous spherical nanoparticles having an average particle size of about 50-100 nm along with some agglomeration. The photocatalytic activity of the ZnO nanoparticles and Ag doped ZnO nanoparticles were investigated via photodegradation of methylene blue (MB) as a standard dye. The data from the photocatalytic activity of these nanoparticles show that 7% Ag-doped ZnO nanoparticles exhibit much enhanced photocatalytic activity as compared to pristine ZnO nanoparticles and other percentages of Ag-doped ZnO nanoparticles. Furthermore, 7% Ag-doped ZnO was made composites with sulfur-doped graphitic carbon nitride by physical mixing method and a series of nanocomposites were made (3.5, 7.5, 25, 50, 75% by weight). It was observed that the 25% composites exhibited better photocatalytic performance than pristine S-g-C 3 N 4 and pure 7% Ag-doped ZnO. Tauc's plot also supports the photodegradation results.

Characterization and Phytotoxicity of Zn, Zn Oxide Nanoparticles (아연 나노 입자와 산화아연 나노 입자의 특성과 식물독성)

  • Kim, Sung-Hyun;Baek, Ju-Hyung;Song, Yi-Reh;Sin, Min-Joo;Lee, In-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1129-1134
    • /
    • 2009
  • Increasing application of nanotechnology highlights the need to clarify nanotoxity and nanoparticles characterization. However, few researches have focused on phytotoxicity of nanoparticles. This study was to examine phytotoxicity on Cumumis sativus seedling and the dissolution of Zn, ZnO nanoparticles in hydroponic culture system. Results of this study; characteristics of Zn, ZnO nanoparticles are more aggregated in nutrient solution than deionized water. C. sativus biomass significantly reduced in the nutrient solution were higher than 100 mg/L, and Zn toxicity showed $Zn^{2+}$> Zn> ZnO NPs. Results of transmission electron microscopy images, Zn and ZnO nanoparticles greatly adhered onto the root cell wall and nanoparticles were observed in the root cell.

Preparation and Characterization of Mixed Matrix Membrane Consisting of Polyethersulfone and ZnO Nanoparticles (Polyethersulfone과 ZnO 나노입자로 조성된 혼합기질막의 제조와 특성 평가)

  • Lee, Seung-Hun;Lee, Min-Su;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.463-469
    • /
    • 2016
  • In this research, a new expectation in enhancing the PES (polyethersulfone) polymer phase inversion membrane performances with nanoparticles is proposed by using ZnO. This paper investigated the synthesis of PES phase inversion membranes including ZnO nanoparticles and evaluates the performance of these mixed matrix membranes. The PES-ZnO mixed matrix membranes were fabricated by phase inversion method using the PES-ZnO-NMP(N-methyl-1-pyrrolidone) casting solutions with low ZnO nanoparticles content of 0.375 wt%. The influence of ZnO nanoparticles on the characteristics of PES-ZnO mixed matrix membranes was investigated with scanning electron microscope observations of membrane cross-sections, contact angle measurements, tensile strength measurements, pure water flux measurements and ultrafiltration experiments of BSA solution. Those results showed that the performance advancements in comparison with the pure PES membrane without ZnO in terms of increasing hydrophilicity as well as reducing membrane fouling by adding ZnO nanoparticles even in low concentration.

Change in the photocatalytic activity of ZnO nanoparticles by additive H2O

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Choi, Jin-Woo;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.285-285
    • /
    • 2010
  • Zinc oxide (ZnO) is a direct band gap semiconductor with 3.37 eV, which has in a hexagonal wurtzite structure. ZnO is a good candidate for a photocatalyst because it has physical and chemical stability, high oxidative properties, and absorbs of ultraviolet light. During ZnO is irradiated by UV light, redox (reduction and oxidation) reactions will occur on the ZnO surface, generating the radicals O2- and OH. These two powerful oxidizing agents have been proven to be effective in decomposition of harmful organic materials, converting them into CO2 and H2O. Therefore, we assume that oxygen on the surface of ZnO is a very important factor in the photocatalytic activities of ZnO nanoparticles. Recently, ZnO nanoparticles are studied in various application fields by many researchers. Photocatalyst research is progressing much in various application fields. But the ZnO nanoparticles have disadvantage that is unstable in water in comparison titanium dioxide (TiO2). The Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoaprticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their phtocatalytic activity changes. The characterization of ZnO nanoparticles were analyzed by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and BET test. Also we defined the photocatalytic activity of ZnO nanoparticles using UV-VIS Spectroscopy. And we explained changing of photocatalytic activity after the water treatment using X-ray Photoelectron Spectroscopy (XPS).

  • PDF